Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
Search
ITO Akihiro
January 25, 2019
Technology
0
9
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
G検定対策社内数学講座
--
行列とベクトル
数学の基礎/線形代数
ITO Akihiro
January 25, 2019
Tweet
Share
More Decks by ITO Akihiro
See All by ITO Akihiro
エンジニア目線でのテスラ
akit37
0
47
「重鎮問題」について(軽めに)
akit37
0
59
Software + Hardware = Fun++
akit37
0
27
基本的に "リモートしかない" ワーク/20231128_KBS_LT
akit37
1
21
3つの先端技術が コミュニティ軸で融合した話。/20230615_CMCMeetup
akit37
0
18
Bootleg_越境してみたときのアウェイ感。/20230328_CMCMeetup
akit37
0
24
始まりは2017年のG検定。/20221026_AITable
akit37
0
15
kintone知能化計画/20220902_kintone_and_JPStripes
akit37
0
25
外観検査用画像前処理の_コツをコード解説付きで。/20220810_CDLE_LT
akit37
0
16
Other Decks in Technology
See All in Technology
Welcome to the LLM Club
koic
0
170
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
3
120
Uniadex__公開版_20250617-AIxIoTビジネス共創ラボ_ツナガルチカラ_.pdf
iotcomjpadmin
0
160
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
2
240
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
110
_第3回__AIxIoTビジネス共創ラボ紹介資料_20250617.pdf
iotcomjpadmin
0
150
地図も、未来も、オープンに。 〜OSGeo.JPとFOSS4Gのご紹介〜
wata909
0
110
生成AIで小説を書くためにプロンプトの制約や原則について学ぶ / prompt-engineering-for-ai-fiction
nwiizo
4
1.5k
本が全く読めなかった過去の自分へ
genshun9
0
270
登壇ネタの見つけ方 / How to find talk topics
pinkumohikan
5
440
5min GuardDuty Extended Threat Detection EKS
takakuni
0
140
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
2
1.1k
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
GitHub's CSS Performance
jonrohan
1031
460k
BBQ
matthewcrist
89
9.7k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Code Review Best Practice
trishagee
68
18k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Documentation Writing (for coders)
carmenintech
72
4.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Automating Front-end Workflow
addyosmani
1370
200k
Unsuck your backbone
ammeep
671
58k
Facilitating Awesome Meetings
lara
54
6.4k
For a Future-Friendly Web
brad_frost
179
9.8k
Transcript
行列とベクトル 〜数学の基礎/線形代数〜 Jun. 2019 created by ITO Akihiro
線形/非線形 • 「線形に回帰する」とか • 関係を直線で表せる つまり、一次関数 比例と同じ 線形 非線形
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50 ※実際には、演算記号は書かない
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
a b c d x y ax + by cx + dy
a b c d e f g h x y z t ax + by + cz + dt ex + fy + gz + ht
• 計算できない場合もある • 左右どちらからかけるかに よって結果が異なる • 「行列の積」と 「行列の内積」は別モノ • 行列の内積
同じサイズの行列A,Bの、対 応する成分の積のすべての 和 a b c d a b c d e f x y z r s t u v w x y z ⭕ 計算できる ❌ 計算できない 2×3行列 3×1行列 2×2行列 3×3行列
単位行列 E • 積の結果が元と同じ (x1と同じ) • 左右どちらからかけても同じ 1 0 0 1 1 0 0 0 1 0
0 0 1 n = 2のとき n = 3のとき En = 1 0 ‥ 0 0 0 1 ‥ 0 0 :: :: 0 0 ‥ 1 0 0 0 ‥ 0 1 1 2 3 4 1 0 0 1 1 2 3 4 例
行列 に対して逆行列 は、 逆行列 Inverse 2 5 1 3 の逆行列は 3 -5 -1 2 2 5 1 3 3 -5
-1 2 1 0 0 1 例 • 積の結果が単位行列 • 左右どちらからかけても同じ
転置行列 Transpose • 行と列を入れ替える • 裏返すイメージ A = x y z x y z
A = T a b c d B = a c b d B = T 1 2 3 4 5 6 1 4 2 5 3 6 A = A = t 例
y x ベクトルは、大きさ+向き(スカラーは、大きさ) 分解 x成分 y成分 A B 大きさ 向き
始点 終点 A B
ベクトルの足し算 平行四辺形を作ればOK y x 0 (1, 2) (3, 1) (3+1,
1+2) a b a+b y x 0 (3, 1) (4, 3) a b a+b
三次元の場合 y x z P (x, y) (x, y, z)
“単語をベクトル空間にマッピングして……” man woman king queen cat lion dog cow horse
car truck bike bicycle plane ship camra mic TV projector
a.k.a. “word2vec” man king woman queen Tokyo Japan Paris France
London GreatBritain Capital Greeting Country こんにちは Bonjour Hello word2vec = word to vector
word2vec での足し算/引き算 man king woman queen Tokyo Japan Paris France
Capital Greeting Country こんにちは Bonjour “Japan” - “France” + “Greeting” = “Bonjour” θ a b ※コサイン類似度 cosθ が1に近ければ、 aとbは似ている a b b’ θ cosθ = b’/a