Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
Search
ITO Akihiro
January 25, 2019
Technology
0
11
2019_G検定対策_数学講座02_行列とベクトル/20190125_JDLA_G_Math_2
G検定対策社内数学講座
--
行列とベクトル
数学の基礎/線形代数
ITO Akihiro
January 25, 2019
Tweet
Share
More Decks by ITO Akihiro
See All by ITO Akihiro
エンジニア目線でのテスラ
akit37
0
48
「重鎮問題」について(軽めに)
akit37
0
61
Software + Hardware = Fun++
akit37
0
28
基本的に "リモートしかない" ワーク/20231128_KBS_LT
akit37
1
22
3つの先端技術が コミュニティ軸で融合した話。/20230615_CMCMeetup
akit37
0
19
Bootleg_越境してみたときのアウェイ感。/20230328_CMCMeetup
akit37
0
25
始まりは2017年のG検定。/20221026_AITable
akit37
0
16
kintone知能化計画/20220902_kintone_and_JPStripes
akit37
0
26
外観検査用画像前処理の_コツをコード解説付きで。/20220810_CDLE_LT
akit37
0
17
Other Decks in Technology
See All in Technology
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
10
2.3k
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
4
1.8k
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
230
「Roblox」の開発環境とその効率化 ~DAU9700万人超の巨大プラットフォームの開発 事始め~
keitatanji
0
130
UDDのススメ - 拡張版 -
maguroalternative
1
580
リモートワークで心掛けていること 〜AI活用編〜
naoki85
0
170
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
1
680
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
180
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
2.4k
生成AIによるソフトウェア開発の収束地点 - Hack Fes 2025
vaaaaanquish
33
14k
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
180
AI関数が早くなったので試してみよう
kumakura
0
310
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Being A Developer After 40
akosma
90
590k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
The Cost Of JavaScript in 2023
addyosmani
51
8.8k
Why Our Code Smells
bkeepers
PRO
337
57k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
How to Ace a Technical Interview
jacobian
278
23k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Transcript
行列とベクトル 〜数学の基礎/線形代数〜 Jun. 2019 created by ITO Akihiro
線形/非線形 • 「線形に回帰する」とか • 関係を直線で表せる つまり、一次関数 比例と同じ 線形 非線形
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50 ※実際には、演算記号は書かない
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )×( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )×( )=( ) 1 2
3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
例 ( )( )=( ) a1 a2 a3 a4 b1 b2 b3 b4 a1b1+a2b3 a1b2+a2b4 a3b1+a4b3 a3b2+a4b4 ( )( )=(
) 1 2 3 4 5 6 7 8 1×5+2×7 1×6+2×8 3×5+4×7 3×6+4×8 =( ) 19 22 43 50
a b c d x y ax + by cx + dy
a b c d e f g h x y z t ax + by + cz + dt ex + fy + gz + ht
• 計算できない場合もある • 左右どちらからかけるかに よって結果が異なる • 「行列の積」と 「行列の内積」は別モノ • 行列の内積
同じサイズの行列A,Bの、対 応する成分の積のすべての 和 a b c d a b c d e f x y z r s t u v w x y z ⭕ 計算できる ❌ 計算できない 2×3行列 3×1行列 2×2行列 3×3行列
単位行列 E • 積の結果が元と同じ (x1と同じ) • 左右どちらからかけても同じ 1 0 0 1 1 0 0 0 1 0
0 0 1 n = 2のとき n = 3のとき En = 1 0 ‥ 0 0 0 1 ‥ 0 0 :: :: 0 0 ‥ 1 0 0 0 ‥ 0 1 1 2 3 4 1 0 0 1 1 2 3 4 例
行列 に対して逆行列 は、 逆行列 Inverse 2 5 1 3 の逆行列は 3 -5 -1 2 2 5 1 3 3 -5
-1 2 1 0 0 1 例 • 積の結果が単位行列 • 左右どちらからかけても同じ
転置行列 Transpose • 行と列を入れ替える • 裏返すイメージ A = x y z x y z
A = T a b c d B = a c b d B = T 1 2 3 4 5 6 1 4 2 5 3 6 A = A = t 例
y x ベクトルは、大きさ+向き(スカラーは、大きさ) 分解 x成分 y成分 A B 大きさ 向き
始点 終点 A B
ベクトルの足し算 平行四辺形を作ればOK y x 0 (1, 2) (3, 1) (3+1,
1+2) a b a+b y x 0 (3, 1) (4, 3) a b a+b
三次元の場合 y x z P (x, y) (x, y, z)
“単語をベクトル空間にマッピングして……” man woman king queen cat lion dog cow horse
car truck bike bicycle plane ship camra mic TV projector
a.k.a. “word2vec” man king woman queen Tokyo Japan Paris France
London GreatBritain Capital Greeting Country こんにちは Bonjour Hello word2vec = word to vector
word2vec での足し算/引き算 man king woman queen Tokyo Japan Paris France
Capital Greeting Country こんにちは Bonjour “Japan” - “France” + “Greeting” = “Bonjour” θ a b ※コサイン類似度 cosθ が1に近ければ、 aとbは似ている a b b’ θ cosθ = b’/a