Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Consumer Data Research and Census Enumeration
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
alexsingleton
March 06, 2016
Education
1
2k
Consumer Data Research and Census Enumeration
Talk Given at the ONS, 25/2/16
alexsingleton
March 06, 2016
Tweet
Share
More Decks by alexsingleton
See All by alexsingleton
Geodemographics in an Academic Context
alexsingleton
0
100
Reproducible Research: Open Methods and Data
alexsingleton
1
3.3k
Our Town: How Socioeconomics Shape Functional Neighborhoods in American Cities
alexsingleton
0
5.5k
Talk in Birmingham
alexsingleton
0
92
Developments in Spatial Data Visualisation
alexsingleton
0
5k
The Internal Structure of Greater London
alexsingleton
0
6.9k
Geographic Data Science and School Markets
alexsingleton
0
4.6k
Geodemographics and the Internal Structure of Cities
alexsingleton
0
4k
Big Data in the Real World
alexsingleton
0
3.6k
Other Decks in Education
See All in Education
HTML5 and the Open Web Platform - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
160
AWS re_Invent に全力で参加したくて筋トレを頑張っている話
amarelo_n24
2
120
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
770
心理学を学び活用することで偉大なスクラムマスターを目指す − 大学とコミュニティを組み合わせた学びの循環 / Becoming a great Scrum Master by learning and using psychology
psj59129
1
1.7k
ThingLink
matleenalaakso
28
4.3k
MySmartSTEAM 2526
cbtlibrary
0
190
TeXで変える教育現場
doratex
1
12k
Leveraging LLMs for student feedback in introductory data science courses (Stats Up AI)
minecr
0
160
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
1111
cbtlibrary
0
270
Introdución ás redes
irocho
0
530
Featured
See All Featured
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
49k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
250
Ethics towards AI in product and experience design
skipperchong
2
190
Six Lessons from altMBA
skipperchong
29
4.1k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
88
4 Signs Your Business is Dying
shpigford
187
22k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Building an army of robots
kneath
306
46k
Navigating Weather and Climate Data
rabernat
0
100
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Skip the Path - Find Your Career Trail
mkilby
0
53
Transcript
www.alex-singleton.com @alexsingleton Consumer Data Research Centre An ESRC Data Investment
Professor Alex Singleton Department of Geography and Planning, University of Liverpool Consumer Data Research and Census Enumeration
Consumer Data Research Centre An ESRC Data Investment
None
http://maps.cdrc.ac.uk/#/geodemographics/iuc14/default/BTTTFTT/12/-1.8265/50.7308/ http://data.cdrc.ac.uk
https://www.flickr.com/photos/ bluesquarething/5512923662/
http://www.alex-singleton.com/r/2014/02/05/2011-census-open-atlas-project-version-two/
None
“What is needed is a solution which will pick out
pattern from the detail, without loosing too much of the original information, and which will admit more detailed examination of parts of the pattern which become relevant to a particular issue or local area as and when required” Webber (1978, 275).
http://www.google.co.uk/intl/en_uk/earth/ how?
http://www.google.co.uk/intl/en_uk/earth/ 52: POORER FAMILIES, MANY CHILDREN, TERRACED HOUSING 51: YOUNG
PEOPLE IN SMALL, LOW COST TERRACES 59: DEPRIVED AREAS AND HIGH- RISE FLATS 11: SETTLED SUBURBIA, OLDER PEOPLE Urban Adversity Affluent Achievers
None
http://esociety.publicprofiler.org/
None
http://esociety.publicprofiler.org/ 250k views - afternoon released
Postcode Search Propensity by e-Society Types 0" 20" 40" 60"
80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300" Index"(Base"100)" Group"A":"E;unengaged" Group"B":"E;marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E;independents" Group"F":"Instrumental"E;users" Group"G":"E;business"users" Group"H":"E;"experts"
Feedback Origin 0" 20" 40" 60" 80" 100" 120" 140"
160" 180" 200" 220" 240" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Feedback Destination 0" 50" 100" 150" 200" 250" 300" 350"
400" 450" 500" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Distance to telephone exchange
Distance to mobile mast http://sitefinder.ofcom.org.uk/ http://www.sharegeo.ac.uk/handle/10672/372
Download Speeds
% households with Internet connection
% of people who mostly use mobile phone for internet
access
% Students
Internet User Classification
An application in retail… • To what extent are retail
centres exposed to populations with variable engagement in online retail
None
What do you need to know? • Estimate of those
people likely to visit a retail centre • Influences on the level and type of engagement of such populations • The composition of the retail centre
Online&sales& Supply&factors& Demand&factors& Retail/Service& Offer& Catchments& &Demographics& Retail& e<Resilience& Vulnerability/adapta?on&
Connec?vity& Consumer&Behaviour& retail/service+mix+ +++a.rac/veness++ +++++shopping+convenience++ + + socio5economic+status+ age+ + ++infrastructure+ +++++++speed+ rurality+ Engagement+with+ICT+ ++++++Shopping+online+ +
Catchment Estimates LSOA (i) A - attractiveness D - distance
Retail Centre (j) L LDC Pij = A↵ j D sj ij Pn j=1 A↵ j D sj ij Large, Medium, Small (s)
None
75%
None
None
None
None
Internet User Classification: Work in Progress • National extent •
Integration of multiple consumer data • Actual use / spend