Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Consumer Data Research and Census Enumeration
Search
alexsingleton
March 06, 2016
Education
1
2k
Consumer Data Research and Census Enumeration
Talk Given at the ONS, 25/2/16
alexsingleton
March 06, 2016
Tweet
Share
More Decks by alexsingleton
See All by alexsingleton
Geodemographics in an Academic Context
alexsingleton
0
95
Reproducible Research: Open Methods and Data
alexsingleton
1
3.3k
Our Town: How Socioeconomics Shape Functional Neighborhoods in American Cities
alexsingleton
0
5.5k
Talk in Birmingham
alexsingleton
0
76
Developments in Spatial Data Visualisation
alexsingleton
0
5k
The Internal Structure of Greater London
alexsingleton
0
6.8k
Geographic Data Science and School Markets
alexsingleton
0
4.6k
Geodemographics and the Internal Structure of Cities
alexsingleton
0
4k
Big Data in the Real World
alexsingleton
0
3.5k
Other Decks in Education
See All in Education
AIの時代こそ、考える知的学習術
yum3
2
190
American Airlines® USA Contact Numbers: The Ultimate 2025 Guide
lievliev
0
250
OJTに夢を見すぎていませんか? ロールプレイ研修の試行錯誤/tryanderror-in-roleplaying-training
takipone
1
210
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
8
1.4k
高校におけるプログラミング教育を考える
naokikato
PRO
0
140
Info Session MSc Computer Science & MSc Applied Informatics
signer
PRO
0
200
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
230
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
590
(2025) L'origami, mieux que la règle et le compas
mansuy
0
130
情報科学類で学べる専門科目38選
momeemt
0
570
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
signer
PRO
0
2.1k
【品女100周年企画】Pitch Deck
shinagawajoshigakuin_100th
0
5.1k
Featured
See All Featured
Making Projects Easy
brettharned
117
6.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Visualization
eitanlees
146
16k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
470
GitHub's CSS Performance
jonrohan
1031
460k
Side Projects
sachag
455
43k
The Language of Interfaces
destraynor
160
25k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Transcript
www.alex-singleton.com @alexsingleton Consumer Data Research Centre An ESRC Data Investment
Professor Alex Singleton Department of Geography and Planning, University of Liverpool Consumer Data Research and Census Enumeration
Consumer Data Research Centre An ESRC Data Investment
None
http://maps.cdrc.ac.uk/#/geodemographics/iuc14/default/BTTTFTT/12/-1.8265/50.7308/ http://data.cdrc.ac.uk
https://www.flickr.com/photos/ bluesquarething/5512923662/
http://www.alex-singleton.com/r/2014/02/05/2011-census-open-atlas-project-version-two/
None
“What is needed is a solution which will pick out
pattern from the detail, without loosing too much of the original information, and which will admit more detailed examination of parts of the pattern which become relevant to a particular issue or local area as and when required” Webber (1978, 275).
http://www.google.co.uk/intl/en_uk/earth/ how?
http://www.google.co.uk/intl/en_uk/earth/ 52: POORER FAMILIES, MANY CHILDREN, TERRACED HOUSING 51: YOUNG
PEOPLE IN SMALL, LOW COST TERRACES 59: DEPRIVED AREAS AND HIGH- RISE FLATS 11: SETTLED SUBURBIA, OLDER PEOPLE Urban Adversity Affluent Achievers
None
http://esociety.publicprofiler.org/
None
http://esociety.publicprofiler.org/ 250k views - afternoon released
Postcode Search Propensity by e-Society Types 0" 20" 40" 60"
80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300" Index"(Base"100)" Group"A":"E;unengaged" Group"B":"E;marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E;independents" Group"F":"Instrumental"E;users" Group"G":"E;business"users" Group"H":"E;"experts"
Feedback Origin 0" 20" 40" 60" 80" 100" 120" 140"
160" 180" 200" 220" 240" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Feedback Destination 0" 50" 100" 150" 200" 250" 300" 350"
400" 450" 500" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Distance to telephone exchange
Distance to mobile mast http://sitefinder.ofcom.org.uk/ http://www.sharegeo.ac.uk/handle/10672/372
Download Speeds
% households with Internet connection
% of people who mostly use mobile phone for internet
access
% Students
Internet User Classification
An application in retail… • To what extent are retail
centres exposed to populations with variable engagement in online retail
None
What do you need to know? • Estimate of those
people likely to visit a retail centre • Influences on the level and type of engagement of such populations • The composition of the retail centre
Online&sales& Supply&factors& Demand&factors& Retail/Service& Offer& Catchments& &Demographics& Retail& e<Resilience& Vulnerability/adapta?on&
Connec?vity& Consumer&Behaviour& retail/service+mix+ +++a.rac/veness++ +++++shopping+convenience++ + + socio5economic+status+ age+ + ++infrastructure+ +++++++speed+ rurality+ Engagement+with+ICT+ ++++++Shopping+online+ +
Catchment Estimates LSOA (i) A - attractiveness D - distance
Retail Centre (j) L LDC Pij = A↵ j D sj ij Pn j=1 A↵ j D sj ij Large, Medium, Small (s)
None
75%
None
None
None
None
Internet User Classification: Work in Progress • National extent •
Integration of multiple consumer data • Actual use / spend