Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Consumer Data Research and Census Enumeration
Search
alexsingleton
March 06, 2016
Education
1
2k
Consumer Data Research and Census Enumeration
Talk Given at the ONS, 25/2/16
alexsingleton
March 06, 2016
Tweet
Share
More Decks by alexsingleton
See All by alexsingleton
Geodemographics in an Academic Context
alexsingleton
0
100
Reproducible Research: Open Methods and Data
alexsingleton
1
3.3k
Our Town: How Socioeconomics Shape Functional Neighborhoods in American Cities
alexsingleton
0
5.5k
Talk in Birmingham
alexsingleton
0
82
Developments in Spatial Data Visualisation
alexsingleton
0
5k
The Internal Structure of Greater London
alexsingleton
0
6.9k
Geographic Data Science and School Markets
alexsingleton
0
4.6k
Geodemographics and the Internal Structure of Cities
alexsingleton
0
4k
Big Data in the Real World
alexsingleton
0
3.6k
Other Decks in Education
See All in Education
EVOLUCIÓN DE LAS NEUROCIENCIAS EN LOS CONTEXTOS ORGANIZACIONALES
jvpcubias
0
180
【ZEPメタバース校舎操作ガイド】
ainischool
0
400
Ch1_-_Partie_1.pdf
bernhardsvt
0
430
いわゆる「ふつう」のキャリアを歩んだ人の割合(若者向け)
hysmrk
0
130
American Airlines® USA Contact Numbers: The Ultimate 2025 Guide
lievliev
0
260
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
GOVERNOR ADDRESS:2025年9月29日合同公式訪問例会:2720 Japan O.K. ロータリーEクラブ、2025年10月6日卓話:藤田 千克由 氏(国際ロータリー第2720地区 2025-2026年度 ガバナー・大分中央ロータリークラブ・大分トキハタクシー(株)顧問)
2720japanoke
0
670
[FUN Open Campus 2025] 何でもセンシングしていいですか?
pman0214
0
260
Introduction - Lecture 1 - Web Technologies (1019888BNR)
signer
PRO
0
5.7k
20250830_MIEE祭_会社員視点での学びのヒント
ponponmikankan
1
180
中央教育審議会 教育課程企画特別部会 情報・技術ワーキンググループに向けた提言 ー次期学習指導要領での情報活用能力の抜本的向上に向けてー
codeforeveryone
0
360
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Thoughts on Productivity
jonyablonski
71
4.9k
Building Applications with DynamoDB
mza
96
6.7k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
640
YesSQL, Process and Tooling at Scale
rocio
174
15k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Rails Girls Zürich Keynote
gr2m
95
14k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
www.alex-singleton.com @alexsingleton Consumer Data Research Centre An ESRC Data Investment
Professor Alex Singleton Department of Geography and Planning, University of Liverpool Consumer Data Research and Census Enumeration
Consumer Data Research Centre An ESRC Data Investment
None
http://maps.cdrc.ac.uk/#/geodemographics/iuc14/default/BTTTFTT/12/-1.8265/50.7308/ http://data.cdrc.ac.uk
https://www.flickr.com/photos/ bluesquarething/5512923662/
http://www.alex-singleton.com/r/2014/02/05/2011-census-open-atlas-project-version-two/
None
“What is needed is a solution which will pick out
pattern from the detail, without loosing too much of the original information, and which will admit more detailed examination of parts of the pattern which become relevant to a particular issue or local area as and when required” Webber (1978, 275).
http://www.google.co.uk/intl/en_uk/earth/ how?
http://www.google.co.uk/intl/en_uk/earth/ 52: POORER FAMILIES, MANY CHILDREN, TERRACED HOUSING 51: YOUNG
PEOPLE IN SMALL, LOW COST TERRACES 59: DEPRIVED AREAS AND HIGH- RISE FLATS 11: SETTLED SUBURBIA, OLDER PEOPLE Urban Adversity Affluent Achievers
None
http://esociety.publicprofiler.org/
None
http://esociety.publicprofiler.org/ 250k views - afternoon released
Postcode Search Propensity by e-Society Types 0" 20" 40" 60"
80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300" Index"(Base"100)" Group"A":"E;unengaged" Group"B":"E;marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E;independents" Group"F":"Instrumental"E;users" Group"G":"E;business"users" Group"H":"E;"experts"
Feedback Origin 0" 20" 40" 60" 80" 100" 120" 140"
160" 180" 200" 220" 240" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Feedback Destination 0" 50" 100" 150" 200" 250" 300" 350"
400" 450" 500" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Distance to telephone exchange
Distance to mobile mast http://sitefinder.ofcom.org.uk/ http://www.sharegeo.ac.uk/handle/10672/372
Download Speeds
% households with Internet connection
% of people who mostly use mobile phone for internet
access
% Students
Internet User Classification
An application in retail… • To what extent are retail
centres exposed to populations with variable engagement in online retail
None
What do you need to know? • Estimate of those
people likely to visit a retail centre • Influences on the level and type of engagement of such populations • The composition of the retail centre
Online&sales& Supply&factors& Demand&factors& Retail/Service& Offer& Catchments& &Demographics& Retail& e<Resilience& Vulnerability/adapta?on&
Connec?vity& Consumer&Behaviour& retail/service+mix+ +++a.rac/veness++ +++++shopping+convenience++ + + socio5economic+status+ age+ + ++infrastructure+ +++++++speed+ rurality+ Engagement+with+ICT+ ++++++Shopping+online+ +
Catchment Estimates LSOA (i) A - attractiveness D - distance
Retail Centre (j) L LDC Pij = A↵ j D sj ij Pn j=1 A↵ j D sj ij Large, Medium, Small (s)
None
75%
None
None
None
None
Internet User Classification: Work in Progress • National extent •
Integration of multiple consumer data • Actual use / spend