Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Consumer Data Research and Census Enumeration
Search
alexsingleton
March 06, 2016
Education
1
2k
Consumer Data Research and Census Enumeration
Talk Given at the ONS, 25/2/16
alexsingleton
March 06, 2016
Tweet
Share
More Decks by alexsingleton
See All by alexsingleton
Geodemographics in an Academic Context
alexsingleton
0
89
Reproducible Research: Open Methods and Data
alexsingleton
1
3.3k
Our Town: How Socioeconomics Shape Functional Neighborhoods in American Cities
alexsingleton
0
5.5k
Talk in Birmingham
alexsingleton
0
67
Developments in Spatial Data Visualisation
alexsingleton
0
5k
The Internal Structure of Greater London
alexsingleton
0
6.8k
Geographic Data Science and School Markets
alexsingleton
0
4.6k
Geodemographics and the Internal Structure of Cities
alexsingleton
0
4k
Big Data in the Real World
alexsingleton
0
3.5k
Other Decks in Education
See All in Education
Sanapilvet opetuksessa
matleenalaakso
0
31k
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
4
15k
小学校プログラミング教育、次の5年に向けて 〜つくること・学ぶことの歓びへ〜 /NextGenerationOfProgrammingEducation
kiriem
2
220
MySmartSTEAM2425
cbtlibrary
0
110
AI 時代軟體工程師的持續升級
mosky
0
1.5k
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
Diseño de estrategia de analítica del aprendizaje en tu centro educativo.
tecuribarri
0
140
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
840
リバースバケットリスト 〜 「死ぬまでにやることリスト」の欠点と対処法
takibi333
0
110
Поступай в ТОГУ 2025
pnuslide
0
7.1k
Padlet opetuksessa
matleenalaakso
4
13k
BEM FASILKOM UNEJ Navaratna
bemilkomunej24
0
130
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Gamification - CAS2011
davidbonilla
80
5.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
6
210
A better future with KSS
kneath
238
17k
4 Signs Your Business is Dying
shpigford
182
22k
The World Runs on Bad Software
bkeepers
PRO
66
11k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Unsuck your backbone
ammeep
669
57k
GraphQLとの向き合い方2022年版
quramy
44
13k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
www.alex-singleton.com @alexsingleton Consumer Data Research Centre An ESRC Data Investment
Professor Alex Singleton Department of Geography and Planning, University of Liverpool Consumer Data Research and Census Enumeration
Consumer Data Research Centre An ESRC Data Investment
None
http://maps.cdrc.ac.uk/#/geodemographics/iuc14/default/BTTTFTT/12/-1.8265/50.7308/ http://data.cdrc.ac.uk
https://www.flickr.com/photos/ bluesquarething/5512923662/
http://www.alex-singleton.com/r/2014/02/05/2011-census-open-atlas-project-version-two/
None
“What is needed is a solution which will pick out
pattern from the detail, without loosing too much of the original information, and which will admit more detailed examination of parts of the pattern which become relevant to a particular issue or local area as and when required” Webber (1978, 275).
http://www.google.co.uk/intl/en_uk/earth/ how?
http://www.google.co.uk/intl/en_uk/earth/ 52: POORER FAMILIES, MANY CHILDREN, TERRACED HOUSING 51: YOUNG
PEOPLE IN SMALL, LOW COST TERRACES 59: DEPRIVED AREAS AND HIGH- RISE FLATS 11: SETTLED SUBURBIA, OLDER PEOPLE Urban Adversity Affluent Achievers
None
http://esociety.publicprofiler.org/
None
http://esociety.publicprofiler.org/ 250k views - afternoon released
Postcode Search Propensity by e-Society Types 0" 20" 40" 60"
80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300" Index"(Base"100)" Group"A":"E;unengaged" Group"B":"E;marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E;independents" Group"F":"Instrumental"E;users" Group"G":"E;business"users" Group"H":"E;"experts"
Feedback Origin 0" 20" 40" 60" 80" 100" 120" 140"
160" 180" 200" 220" 240" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Feedback Destination 0" 50" 100" 150" 200" 250" 300" 350"
400" 450" 500" Index"(Base"100)" Group"A":"E:unengaged" Group"B":"E:marginalised" Group"C":"Becoming"engaged" Group"D":"E"for"entertainment"&" shopping" Group"E":"E:independents" Group"F":"Instrumental"E:users" Group"G":"E:business"users" Group"H":"E:"experts"
Distance to telephone exchange
Distance to mobile mast http://sitefinder.ofcom.org.uk/ http://www.sharegeo.ac.uk/handle/10672/372
Download Speeds
% households with Internet connection
% of people who mostly use mobile phone for internet
access
% Students
Internet User Classification
An application in retail… • To what extent are retail
centres exposed to populations with variable engagement in online retail
None
What do you need to know? • Estimate of those
people likely to visit a retail centre • Influences on the level and type of engagement of such populations • The composition of the retail centre
Online&sales& Supply&factors& Demand&factors& Retail/Service& Offer& Catchments& &Demographics& Retail& e<Resilience& Vulnerability/adapta?on&
Connec?vity& Consumer&Behaviour& retail/service+mix+ +++a.rac/veness++ +++++shopping+convenience++ + + socio5economic+status+ age+ + ++infrastructure+ +++++++speed+ rurality+ Engagement+with+ICT+ ++++++Shopping+online+ +
Catchment Estimates LSOA (i) A - attractiveness D - distance
Retail Centre (j) L LDC Pij = A↵ j D sj ij Pn j=1 A↵ j D sj ij Large, Medium, Small (s)
None
75%
None
None
None
None
Internet User Classification: Work in Progress • National extent •
Integration of multiple consumer data • Actual use / spend