Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NERのための転移学習
Search
altescy
September 18, 2019
Research
2
1.3k
NERのための転移学習
altescy
September 18, 2019
Tweet
Share
Other Decks in Research
See All in Research
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
190
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
1k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
320
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
870
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
100
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
690
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
260
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
320
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
3
130
20250725-bet-ai-day
cipepser
2
480
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
31k
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
110
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
What's in a price? How to price your products and services
michaelherold
246
12k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Become a Pro
speakerdeck
PRO
29
5.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Mobile First: as difficult as doing things right
swwweet
224
10k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Speed Design
sergeychernyshev
32
1.2k
Transcript
NERのための転移学習 山口泰弘
自己紹介 山口 泰弘 / Yasuhiro Yamaguchi ID: @altescy 奈良先端科学技術大学院大学 修士1年
転移学習 • あるドメインのデータや学習済みモデルを使って他の ドメインのモデルを学習する手法 • 自然言語処理の分野における転移学習 ◦ Cross-Domain 例: ニュース →
SNS ◦ Cross-Lingual 例: 日本語 → 英語 • データの多いドメインから得られる知識を活用したい domain-specificなNERを行いたいと いう要求は現実問題として多そう
アプローチ 1. 単語翻訳 (cross-lingual) 2. Fine-Tuning 3. 潜在表現の共有
アプローチ: 単語翻訳 NER MODEL 翻訳 ソース言語 ターゲット言語 ラベル
アプローチ: 単語翻訳 • Cheap Translation for Cross-Lingual Named Entity Recognition
[Mayhew+, 2017] ◦ 単語翻訳によるCross-Lingual NERの提案 • Neural Cross-Lingual NER with Minimal Resources [Xie+, 2018] ◦ 単語埋め込みのアライメントによる単語翻訳 ◦ self-attentionによる語順の違いの吸収
アプローチ: Fine-Tuning NER MODEL NER MODEL ソースのデータで学習 ターゲットのデータで再学習
アプローチ: Fine-Tuning • How Transferable are Neural Networks in NLP
Applications? [Mou+, 2016] ◦ Fine-TuningによるNERタスクの転移学習の可能性を 考察 • Neural Adaptation Layers for Cross-domain Named Entity Recognition [Lin+, 2018] ◦ Fine-Tuningと,固定の学習済みエンコーダの前後に レイヤーを追加する手法の比較
アプローチ: 潜在表現の共有 NER MODEL 共有エンコーダ ソース ターゲット
アプローチ: 潜在表現の共有 • Adversarial Transfer Learning for Chinese Named Entity
Recognition with Self-Attention Mechanism [Cao+, 2018] ◦ 中国語における,単語分割→NERの転移学習 • Dual Adversarial Neural Transfer for Low-Resource Named Entity Recognition [Zhou1+, 2019] ◦ 高リソース→低リソースの転移学習 ◦ 今回はこれにフォーカスします
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] 概要
• 高リソース→低リソースの転移学習 • 潜在表現を共有するモデル 提案手法 • リソース同士のデータの不均衡を考慮する (データ規模・予測の難しさ) • リソース特有の特徴を考慮する • 敵対訓練による正則化を行う
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] DATNet-P
ソース / 共有 / ターゲット DATNet-F すべて共有
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Discriminator
• 共有の潜在表現がどちらのリソースのものか判別 • エンコーダは判別器が誤るように学習 • 不均衡を考慮した誤差関数 (いわゆる Focal-Loss) データ規模の不均衡を調整 予測の難しい例を学習 Adversarial Training • 単語埋め込みに敵対的摂動を与えながら学習
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] POSなど追加の特徴量を使わず既存手法と同程度以上
cross-lingual cross-domain
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Cross-Lingual
(英→西) • ターゲットのデータ数が少ないときはDATNet-F, 多いと きはDATNet-Pがよい Cross-Domain (ニュース→SNS) • データ規模によらずDATNet-Fがよい
サーベイの所感 • ソースとターゲットで共有する情報と,ドメイン・ 言語特有の情報の処理を分けて学習する • self-attentionを利用する ◦ 大域的な依存関係を捉える ◦ 言語ごとの語順の違いを吸収する
• データの不均衡を考慮する ◦ ソース・ターゲットのデータ規模 ◦ 予測が簡単な例・難しい例