Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NERのための転移学習
Search
altescy
September 18, 2019
Research
2
1.2k
NERのための転移学習
altescy
September 18, 2019
Tweet
Share
Other Decks in Research
See All in Research
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
150
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
610
機械学習でヒトの行動を変える
hiromu1996
1
380
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
5
1.6k
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
4
770
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
530
ダイナミックプライシング とその実例
skmr2348
3
480
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
200
Weekly AI Agents News!
masatoto
26
35k
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
900
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
150
最近のVisual Odometryと Depth Estimation
sgk
1
310
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
RailsConf 2023
tenderlove
29
940
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Music & Morning Musume
bryan
46
6.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Practical Orchestrator
shlominoach
186
10k
Making Projects Easy
brettharned
116
5.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Optimizing for Happiness
mojombo
376
70k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
4 Signs Your Business is Dying
shpigford
181
21k
Transcript
NERのための転移学習 山口泰弘
自己紹介 山口 泰弘 / Yasuhiro Yamaguchi ID: @altescy 奈良先端科学技術大学院大学 修士1年
転移学習 • あるドメインのデータや学習済みモデルを使って他の ドメインのモデルを学習する手法 • 自然言語処理の分野における転移学習 ◦ Cross-Domain 例: ニュース →
SNS ◦ Cross-Lingual 例: 日本語 → 英語 • データの多いドメインから得られる知識を活用したい domain-specificなNERを行いたいと いう要求は現実問題として多そう
アプローチ 1. 単語翻訳 (cross-lingual) 2. Fine-Tuning 3. 潜在表現の共有
アプローチ: 単語翻訳 NER MODEL 翻訳 ソース言語 ターゲット言語 ラベル
アプローチ: 単語翻訳 • Cheap Translation for Cross-Lingual Named Entity Recognition
[Mayhew+, 2017] ◦ 単語翻訳によるCross-Lingual NERの提案 • Neural Cross-Lingual NER with Minimal Resources [Xie+, 2018] ◦ 単語埋め込みのアライメントによる単語翻訳 ◦ self-attentionによる語順の違いの吸収
アプローチ: Fine-Tuning NER MODEL NER MODEL ソースのデータで学習 ターゲットのデータで再学習
アプローチ: Fine-Tuning • How Transferable are Neural Networks in NLP
Applications? [Mou+, 2016] ◦ Fine-TuningによるNERタスクの転移学習の可能性を 考察 • Neural Adaptation Layers for Cross-domain Named Entity Recognition [Lin+, 2018] ◦ Fine-Tuningと,固定の学習済みエンコーダの前後に レイヤーを追加する手法の比較
アプローチ: 潜在表現の共有 NER MODEL 共有エンコーダ ソース ターゲット
アプローチ: 潜在表現の共有 • Adversarial Transfer Learning for Chinese Named Entity
Recognition with Self-Attention Mechanism [Cao+, 2018] ◦ 中国語における,単語分割→NERの転移学習 • Dual Adversarial Neural Transfer for Low-Resource Named Entity Recognition [Zhou1+, 2019] ◦ 高リソース→低リソースの転移学習 ◦ 今回はこれにフォーカスします
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] 概要
• 高リソース→低リソースの転移学習 • 潜在表現を共有するモデル 提案手法 • リソース同士のデータの不均衡を考慮する (データ規模・予測の難しさ) • リソース特有の特徴を考慮する • 敵対訓練による正則化を行う
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] DATNet-P
ソース / 共有 / ターゲット DATNet-F すべて共有
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Discriminator
• 共有の潜在表現がどちらのリソースのものか判別 • エンコーダは判別器が誤るように学習 • 不均衡を考慮した誤差関数 (いわゆる Focal-Loss) データ規模の不均衡を調整 予測の難しい例を学習 Adversarial Training • 単語埋め込みに敵対的摂動を与えながら学習
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] POSなど追加の特徴量を使わず既存手法と同程度以上
cross-lingual cross-domain
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Cross-Lingual
(英→西) • ターゲットのデータ数が少ないときはDATNet-F, 多いと きはDATNet-Pがよい Cross-Domain (ニュース→SNS) • データ規模によらずDATNet-Fがよい
サーベイの所感 • ソースとターゲットで共有する情報と,ドメイン・ 言語特有の情報の処理を分けて学習する • self-attentionを利用する ◦ 大域的な依存関係を捉える ◦ 言語ごとの語順の違いを吸収する
• データの不均衡を考慮する ◦ ソース・ターゲットのデータ規模 ◦ 予測が簡単な例・難しい例