Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NERのための転移学習
Search
altescy
September 18, 2019
Research
2
1.3k
NERのための転移学習
altescy
September 18, 2019
Tweet
Share
Other Decks in Research
See All in Research
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
110
説明可能な機械学習と数理最適化
kelicht
2
710
Remote sensing × Multi-modal meta survey
satai
4
640
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
1
140
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
730
IMC の細かすぎる話 2025
smly
2
780
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
300
財務諸表監査のための逐次検定
masakat0
0
210
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
620
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
100
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Balancing Empowerment & Direction
lara
5
800
The Invisible Side of Design
smashingmag
302
51k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Making Projects Easy
brettharned
120
6.5k
Six Lessons from altMBA
skipperchong
29
4.1k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
A designer walks into a library…
pauljervisheath
210
24k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Thoughts on Productivity
jonyablonski
73
5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Transcript
NERのための転移学習 山口泰弘
自己紹介 山口 泰弘 / Yasuhiro Yamaguchi ID: @altescy 奈良先端科学技術大学院大学 修士1年
転移学習 • あるドメインのデータや学習済みモデルを使って他の ドメインのモデルを学習する手法 • 自然言語処理の分野における転移学習 ◦ Cross-Domain 例: ニュース →
SNS ◦ Cross-Lingual 例: 日本語 → 英語 • データの多いドメインから得られる知識を活用したい domain-specificなNERを行いたいと いう要求は現実問題として多そう
アプローチ 1. 単語翻訳 (cross-lingual) 2. Fine-Tuning 3. 潜在表現の共有
アプローチ: 単語翻訳 NER MODEL 翻訳 ソース言語 ターゲット言語 ラベル
アプローチ: 単語翻訳 • Cheap Translation for Cross-Lingual Named Entity Recognition
[Mayhew+, 2017] ◦ 単語翻訳によるCross-Lingual NERの提案 • Neural Cross-Lingual NER with Minimal Resources [Xie+, 2018] ◦ 単語埋め込みのアライメントによる単語翻訳 ◦ self-attentionによる語順の違いの吸収
アプローチ: Fine-Tuning NER MODEL NER MODEL ソースのデータで学習 ターゲットのデータで再学習
アプローチ: Fine-Tuning • How Transferable are Neural Networks in NLP
Applications? [Mou+, 2016] ◦ Fine-TuningによるNERタスクの転移学習の可能性を 考察 • Neural Adaptation Layers for Cross-domain Named Entity Recognition [Lin+, 2018] ◦ Fine-Tuningと,固定の学習済みエンコーダの前後に レイヤーを追加する手法の比較
アプローチ: 潜在表現の共有 NER MODEL 共有エンコーダ ソース ターゲット
アプローチ: 潜在表現の共有 • Adversarial Transfer Learning for Chinese Named Entity
Recognition with Self-Attention Mechanism [Cao+, 2018] ◦ 中国語における,単語分割→NERの転移学習 • Dual Adversarial Neural Transfer for Low-Resource Named Entity Recognition [Zhou1+, 2019] ◦ 高リソース→低リソースの転移学習 ◦ 今回はこれにフォーカスします
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] 概要
• 高リソース→低リソースの転移学習 • 潜在表現を共有するモデル 提案手法 • リソース同士のデータの不均衡を考慮する (データ規模・予測の難しさ) • リソース特有の特徴を考慮する • 敵対訓練による正則化を行う
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] DATNet-P
ソース / 共有 / ターゲット DATNet-F すべて共有
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Discriminator
• 共有の潜在表現がどちらのリソースのものか判別 • エンコーダは判別器が誤るように学習 • 不均衡を考慮した誤差関数 (いわゆる Focal-Loss) データ規模の不均衡を調整 予測の難しい例を学習 Adversarial Training • 単語埋め込みに敵対的摂動を与えながら学習
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] POSなど追加の特徴量を使わず既存手法と同程度以上
cross-lingual cross-domain
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Cross-Lingual
(英→西) • ターゲットのデータ数が少ないときはDATNet-F, 多いと きはDATNet-Pがよい Cross-Domain (ニュース→SNS) • データ規模によらずDATNet-Fがよい
サーベイの所感 • ソースとターゲットで共有する情報と,ドメイン・ 言語特有の情報の処理を分けて学習する • self-attentionを利用する ◦ 大域的な依存関係を捉える ◦ 言語ごとの語順の違いを吸収する
• データの不均衡を考慮する ◦ ソース・ターゲットのデータ規模 ◦ 予測が簡単な例・難しい例