Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NERのための転移学習
Search
altescy
September 18, 2019
Research
2
1.2k
NERのための転移学習
altescy
September 18, 2019
Tweet
Share
Other Decks in Research
See All in Research
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
Self-supervised audiovisual representation learning for remote sensing data
satai
3
220
言語モデルの内部機序:解析と解釈
eumesy
PRO
49
18k
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
650
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
3.2k
20250502_ABEJA_論文読み会_スライド
flatton
0
170
20250624_熊本経済同友会6月例会講演
trafficbrain
1
180
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
250
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
420
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.1k
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Optimizing for Happiness
mojombo
379
70k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
What's in a price? How to price your products and services
michaelherold
246
12k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Site-Speed That Sticks
csswizardry
10
680
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
How GitHub (no longer) Works
holman
314
140k
Rails Girls Zürich Keynote
gr2m
94
14k
Transcript
NERのための転移学習 山口泰弘
自己紹介 山口 泰弘 / Yasuhiro Yamaguchi ID: @altescy 奈良先端科学技術大学院大学 修士1年
転移学習 • あるドメインのデータや学習済みモデルを使って他の ドメインのモデルを学習する手法 • 自然言語処理の分野における転移学習 ◦ Cross-Domain 例: ニュース →
SNS ◦ Cross-Lingual 例: 日本語 → 英語 • データの多いドメインから得られる知識を活用したい domain-specificなNERを行いたいと いう要求は現実問題として多そう
アプローチ 1. 単語翻訳 (cross-lingual) 2. Fine-Tuning 3. 潜在表現の共有
アプローチ: 単語翻訳 NER MODEL 翻訳 ソース言語 ターゲット言語 ラベル
アプローチ: 単語翻訳 • Cheap Translation for Cross-Lingual Named Entity Recognition
[Mayhew+, 2017] ◦ 単語翻訳によるCross-Lingual NERの提案 • Neural Cross-Lingual NER with Minimal Resources [Xie+, 2018] ◦ 単語埋め込みのアライメントによる単語翻訳 ◦ self-attentionによる語順の違いの吸収
アプローチ: Fine-Tuning NER MODEL NER MODEL ソースのデータで学習 ターゲットのデータで再学習
アプローチ: Fine-Tuning • How Transferable are Neural Networks in NLP
Applications? [Mou+, 2016] ◦ Fine-TuningによるNERタスクの転移学習の可能性を 考察 • Neural Adaptation Layers for Cross-domain Named Entity Recognition [Lin+, 2018] ◦ Fine-Tuningと,固定の学習済みエンコーダの前後に レイヤーを追加する手法の比較
アプローチ: 潜在表現の共有 NER MODEL 共有エンコーダ ソース ターゲット
アプローチ: 潜在表現の共有 • Adversarial Transfer Learning for Chinese Named Entity
Recognition with Self-Attention Mechanism [Cao+, 2018] ◦ 中国語における,単語分割→NERの転移学習 • Dual Adversarial Neural Transfer for Low-Resource Named Entity Recognition [Zhou1+, 2019] ◦ 高リソース→低リソースの転移学習 ◦ 今回はこれにフォーカスします
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] 概要
• 高リソース→低リソースの転移学習 • 潜在表現を共有するモデル 提案手法 • リソース同士のデータの不均衡を考慮する (データ規模・予測の難しさ) • リソース特有の特徴を考慮する • 敵対訓練による正則化を行う
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] DATNet-P
ソース / 共有 / ターゲット DATNet-F すべて共有
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Discriminator
• 共有の潜在表現がどちらのリソースのものか判別 • エンコーダは判別器が誤るように学習 • 不均衡を考慮した誤差関数 (いわゆる Focal-Loss) データ規模の不均衡を調整 予測の難しい例を学習 Adversarial Training • 単語埋め込みに敵対的摂動を与えながら学習
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] POSなど追加の特徴量を使わず既存手法と同程度以上
cross-lingual cross-domain
Dual Adversarial Neural Transfer for Low-Resource NER [Zhou1+, 2019] Cross-Lingual
(英→西) • ターゲットのデータ数が少ないときはDATNet-F, 多いと きはDATNet-Pがよい Cross-Domain (ニュース→SNS) • データ規模によらずDATNet-Fがよい
サーベイの所感 • ソースとターゲットで共有する情報と,ドメイン・ 言語特有の情報の処理を分けて学習する • self-attentionを利用する ◦ 大域的な依存関係を捉える ◦ 言語ごとの語順の違いを吸収する
• データの不均衡を考慮する ◦ ソース・ターゲットのデータ規模 ◦ 予測が簡単な例・難しい例