Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
project yamcha phase 1
Search
andmohiko
November 18, 2018
Programming
1
120
project yamcha phase 1
学生の一行プロフィールをベクトル化して類似度の高いものを探す
andmohiko
November 18, 2018
Tweet
Share
More Decks by andmohiko
See All by andmohiko
Mantine + React Hook Form + Zod でフォームをつくる
andmohiko
0
740
文章のベクトル化
andmohiko
0
440
Predicting categories of news articles
andmohiko
0
130
kobachi presentation
andmohiko
0
210
Other Decks in Programming
See All in Programming
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
300
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
140
AgentCoreとHuman in the Loop
har1101
5
240
Fluid Templating in TYPO3 14
s2b
0
130
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
470
高速開発のためのコード整理術
sutetotanuki
1
400
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
180
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
ぼくの開発環境2026
yuzneri
0
230
組織で育むオブザーバビリティ
ryota_hnk
0
180
Featured
See All Featured
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
A designer walks into a library…
pauljervisheath
210
24k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Become a Pro
speakerdeck
PRO
31
5.8k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
Statistics for Hackers
jakevdp
799
230k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Transcript
やみつき飲茶な熱帯夜 Project yamcha phase 1 2018/09/11 いとぅー
あうとらいん • 目的 • 理論 • 手法 • 結果 •
考察 • 今後の展望
目的 人事が今までにスカウトを打った学生と似ている学生をキャッチコ ピーを使って探し出す。 つまりキャッチコピーが似ている人を探し当てたい。
目的 人事が今までにスカウトを打った学生と似ている学生をキャッチコ ピーを使って探し出す。 つまりキャッチコピーが似ている人を探し当てたい。 自然言語において「似ている」とは 数学的にどういうことか?
自然言語において「似ている」とは、 文章をベクトルに変換し、そのベクトル同士の類似度を測る。 doc2vecという手法を使うが、 doc2vecについて説明するためにまずword2vecについて説明する。 理論
理論 word2vecのせつめー word2vecとは... 大量のテキストデータを解析し、 各単語の意味をベクトル表現化する手法 ↑これを「単語の分散表現を得る」という 単語をベクトル化することで、 ・単語同士の意味の近さを計算 ・単語同士の意味を足したり引いたりとい うことが可能になる。
理論 word2vecのせつめー word2vecとは... 大量のテキストデータを解析し、 各単語の意味をベクトル表現化する手法 ↑これを「単語の分散表現を得る」という 単語をベクトル化することで、 ・単語同士の意味の近さを計算 ・単語同士の意味を足したり引いたりとい うことが可能になる。
king - man + woman = queen となる!!!
理論 word2vecのせつめー word2vecとは... 大量のテキストデータを解析し、 各単語の意味をベクトル表現化する手法 ←これを「単語の分散表現を得る」という 単語をベクトル化することで、 ・単語同士の意味の近さを計算 ・単語同士の意味を足したり引いたりとい うことが可能になる。
king - man + woman = queen となる!!! word2vecを文章レベルに 拡張したものがdoc2vecである
理論 ベクトルの類似度を測るにはコサイン類似度を使う。 cosθが ・1ならベクトルの方 向が一致、 ・-1なら方向が真逆と いうことになる θ θ
手法 • 使用したデータ TRUNKのレジュメに記入されたユーザーのキャッチコピーと自己紹介 • データセットの作り方 キャッチコピーと自己紹介をただ学習させるのか、 同じ文脈としてstringをくっつくる方がよいのか。 • 特徴量の作り方
全ての単語を使用するか、 名詞のみ取り出すか、 名詞と動詞を取り出すか。
結果 jupyter notebookをご覧ください
結果 • 単語は名詞と動詞と形容詞を取り出して使うのがよい • データセットはシンプルにキャッチコピーと自己紹介を学習させるのがよい
考察 & 反省まとめ • 「似ている」とされたキャッチコピーは「なんとなく似てるかも...?」「うーん」「あー」く らいなものが取ってこれた。 →テキストデータが増えればここの精度は上がるはず • 逆に「似ていない」とされたキャッチコピーはしっかり似ていない 明らかに「ちげーな」って思うやつははじくことができた
• データ整形の時間を辞書追加の時間にすればよかった
• 「なんとなく近いかも」くらいなものを取り出すことに成功したので、 現状のものをAPI化してプロダクトに埋め込む • API化に向けてコードを書き直す • それに伴って発生する課題 ◦ 新しいユーザーが追加される →学習し直すタイミング
◦ キャッチコピーや自己紹介が更新された時の旧文章の扱い 今後の展望と課題