Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What academia can learn from open source
Search
Arfon Smith
October 22, 2014
Science
1
210
What academia can learn from open source
My slides from All Things Open -
http://allthingsopen.org/
Arfon Smith
October 22, 2014
Tweet
Share
More Decks by Arfon Smith
See All by Arfon Smith
Why Generative AI makes collaborative, versioned science more important than ever
arfon
0
26
Generative AI is here: What are we going to do about it?
arfon
0
130
Five principles for building generative AI products
arfon
0
95
Five principles for building generative AI products
arfon
0
190
Learning from NASA's commitment to open
arfon
0
84
JOSS rOpenSci presentation
arfon
0
270
Five ways to use GitHub to automate scholarly work
arfon
0
120
Journal of Open Source Software: Bot-assisted community peer-review
arfon
0
120
A vision for the future of astronomical archives
arfon
0
150
Other Decks in Science
See All in Science
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.3k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
110
学術講演会中央大学学員会府中支部
tagtag
0
300
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
790
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
950
データベース01: データベースを使わない世界
trycycle
PRO
1
760
オンプレミス環境にKubernetesを構築する
koukimiura
0
320
機械学習 - SVM
trycycle
PRO
1
870
研究って何だっけ / What is Research?
ks91
PRO
1
110
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
980
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
840
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.1k
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Code Review Best Practice
trishagee
70
19k
A Tale of Four Properties
chriscoyier
160
23k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
We Have a Design System, Now What?
morganepeng
53
7.7k
Documentation Writing (for coders)
carmenintech
73
5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Docker and Python
trallard
45
3.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Transcript
What Academia Can Learn from Open Source Creative Commons Attribution
3.0 Unported License Arfon Smith
[email protected]
@arfon "
!
What is a GitHub?
None
None
None
None
None
None
None
A story from my life (10 years ago)
Astronomer
tl;dr - technical, but brimming with inefficiencies
http://www.flickr.com/photos/blachswan
http://www.flickr.com/photos/esoastronomy/
http://www.flickr.com/photos/esoastronomy/ http://www.flickr.com/photos/jamiegilbert
http://amandabauer.blogspot.com/
None
None
Diffraction grating Telescope Detector
None
None
None
None
None
130 130 1 2048 189 189 258 258 480 562
378 378 493 521 390 397 851 851 247 274 319 319 304 580 493 511 610 636 188 188 228 228 > cat bad_pix_mask.txt
Wasteful
Wasteful 2 days work
Wasteful 2 days work 3 observing runs/week
Wasteful 2 days work 3 observing runs/week 52 weeks in
year
Wasteful 2 days work 3 observing runs/week 52 weeks in
year 15 year detector lifetime
Wasteful 2 days work 3 observing runs/week 52 weeks in
year 15 year detector lifetime 2*3*52*15 = 4680 days (13 years)
Wasteful… but the norm 2 days work 3 observing runs/week
52 weeks in year 15 year detector lifetime 2*3*52*15 = 4680 days (13 years)
A second story from my life (2 months ago)
None
None
None
None
None
None
Software composed of many components
Your software is the thing that is different
Open Source: Ubiquitous culture of reuse
Why isn’t academia like this?
None
None
http://dx.doi.org/ 10.1051/0004-6361
Careers are based on paper counts
Careers are based on paper citations
Three major problems
1. ’Novel’ results preferred
2. Reduced collaboration
3. The format sucks
None
Explain what you did
So that others can repeat
Everybody learns
It’s the way that we explain that matters most
None
State of the art technology
State of the art technology… for the late 17th century*
* Michael Nielsen
None
Data, methods, prose
http://www.nature.com/news/2011/111005/full/478026a.html
BIG SCIENCE
None
None
None
Complex stuff Numbers, data Science!
Reproducibility Data intensive
Verification may take years (if at all)
None
What do open source collaborations do well?
Open source collaborations Open Source vs Open Collaborations
Open source collaborations Open Source: the right to modify, not
the right to contribute.
Open source collaborations Open Collaborations: a highly collaborative development process
and are receptive to contributions of code, documentation, discussion, etc from anyone who shows competent interest.
Open source collaborations Open Collaborations: a highly collaborative development process
and are receptive to contributions of code, documentation, discussion, etc from anyone who shows competent interest. THIS
Ubiquitous culture of reuse
Expose their collaborative process
How do 4000 people work together?
The pull request
None
None
None
None
None
None
None
discuss improve Code first, permission later
Every time this happens the community learns
None
None
None
None
Merged pull requests
None
None
“open source is… reproducible by necessity” Fernando Perez http://blog.fperez.org/2013/11/an-ambitious-experiment-in-data-science.html
Better at collaborating because they have to be
(doesn’t have to mean this) Open Public? =
‘Open Source’ way of working
Open (within your team, department or institution)
Electronic & Available
Asynchronous, exposed process
Lock-free
Low friction collaboration
Academia can learn from open source
Academia must learn from open source
None
What’s happening in academia today?
Collaboration around code
None
None
None
None
None
Collaborative authoring
None
None
Collaborative teaching
None
None
None
Where might more significant change happen?
Where do communities form?
Around a shared challenge?
Around shared data?
None
10 ? n Level 1 (continual) Level 2 (periodic)
Supernovae Weak lensing Active Galactic Nuclei Solar System Galaxies Transients/variable
stars Large-scale structure Stars, Milky Way Strong lensing Informatics and Statistics Dark Energy (DESC)
None
Software composed of many components
Your software should be the thing that is different
science too! Your software should be the thing that is
different
Scientific data is becoming more open
http://www.nature.com/news/2011/111005/full/478026a.html
How do we make this behaviour the norm?
Credit
“Academic environments of today do not reward tool builders” Ed
Lazowska, OSTP event http://lazowska.cs.washington.edu/MS/MS.OSTP.pdf
None
None
None
None
None
None
None
None
“publishing a paper about code is basically just advertising” David
Donoho http://www.stanford.edu/~vcs/Video.html
None
How to derive meaningful metrics from open contributions?
None
Trust
None
None
None
None
None
Discoverability
None
Barriers are cultural, not technical
Why should we care?
Because we paid for it?
Because open=good?
Because care about the creation of knowledge?
Open source has solved much of what academia needs
Our challenge is to adapt and evolve the academy in
this new collaborative age
Thanks
[email protected]
@arfon "