Optoelectronic Control • Parent Binary Oxides: ZnO, In2 O3 , Al2 O3 , Ga2 O3 , SnO2 • Electronic Band Gaps: Al >> Ga > Sn > Zn > In • Resistivity: Al >> Ga > Sn > Zn > In In2 O3 (ZnO) In2 O3 (ZnO)3 In2 O3 (ZnO)5 A. Walsh et al. Phys. Rev. B 79, 073105 (2009).
Explore high pressure behaviour. • Determine lowest energy structures formed from stoichiometric building blocks: (In2 O3 )n n = 1 – 7 Global optimization: Evolutionary algorithm (GULP). • Validate and characterize using a first-principles method. Density functional theory calculations (VASP). • Assess structural trends, stability and optoelectronic properties.
ij ij q q r C U A r r ρ ⎛ ⎞ = + − − ⎜ ⎟ ⎝ ⎠ Property Experiment Literature Potential1 Sokol Potential2 LDA-DFT a (Å) 10.117 10.120 10.121 10.094 B (GPa) 194.24 222.79 193.77 174 ε0 8.9-9.5 6.87 9.05 ε∞ 4.0 3.53 3.90 3.82 • Buckingham potential with shell polarization on oxygen. 1O. Warschkow et al., J. Am. Ceram. Soc. 86, 1700 (2003). 2A. Walsh et al, Chemistry of Materials 21, 4962 (2009).
describes bulk and cluster properties. • n < 4 clusters have distinct symmetric global minima. • n > 4 clusters tend towards bulk-like, low symmetry particles. • Open framework clusters have high energetic cost. • HOMO and LUMO character is consistent with bulk. Future work: • Extend to higher n. • Explore excited state properties. Acknowledgements: Materials Chemistry Consortium (Access to Hector); EU FP7 (Marie Curie Fellowship).