Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Global and local minimum structures for cluster...

Aron Walsh
November 11, 2009

Global and local minimum structures for clusters of In2O3

A presentation delivered at the annual CCP5 meeting (November 2009 in London) on indium oxide nanoclusters. Later published in http://pubs.rsc.org/en/Content/ArticleLanding/2010/CP/c0cp00056f#!divAbstract

Aron Walsh

November 11, 2009
Tweet

More Decks by Aron Walsh

Other Decks in Science

Transcript

  1. Aron Walsh, Richard Catlow, Alexey Sokol and Scott Woodley Materials

    Chemistry, Department of Chemistry, University College London Global and Local Minimum Structures for Clusters of Indium Sesquioxide
  2. Transparent Conducting Oxides Combine optical transparency with electronic conductivity >

    3 eV EF n-type: In2 O3 , SnO2 , ZnO In2 O3 :Sn, SnO2 :F, ZnO:Al p-type: CuAlO2 , SrCu2 O2 CuAlO2 :Mg, SrCu2 O2 :Ca Applications: Flat-panel displays, organic and inorganic solar cells, organic light-emitting diodes, transparent displays, chemical sensors, smart windows.
  3. Reduce Indium Dependence • Lower Cost • Increase Stability •

    Optoelectronic Control • Parent Binary Oxides: ZnO, In2 O3 , Al2 O3 , Ga2 O3 , SnO2 • Electronic Band Gaps: Al >> Ga > Sn > Zn > In • Resistivity: Al >> Ga > Sn > Zn > In In2 O3 (ZnO) In2 O3 (ZnO)3 In2 O3 (ZnO)5 A. Walsh et al. Phys. Rev. B 79, 073105 (2009).
  4. Goal and Methods • Derive robust interatomic In2 O3 potential.

    Explore high pressure behaviour. • Determine lowest energy structures formed from stoichiometric building blocks: (In2 O3 )n n = 1 – 7 Global optimization: Evolutionary algorithm (GULP). • Validate and characterize using a first-principles method. Density functional theory calculations (VASP). • Assess structural trends, stability and optoelectronic properties.
  5. Indium Sesquioxide • Crystal Structure: Cubic bixbyite lattice (80 atom

    cell). • Band Gap: Fundamental 2.9 eV1; optical > 3.5 eV. • Conductivity: Oxygen deficient; intrinsically n-type. 1A. Walsh et al. Phys. Rev. Lett. 100, 167402 (2008).
  6. Interatomic Potential: In2 O3 6 exp i j ij ij

    ij ij q q r C U A r r ρ ⎛ ⎞ = + − − ⎜ ⎟ ⎝ ⎠ Property Experiment Literature Potential1 Sokol Potential2 LDA-DFT a (Å) 10.117 10.120 10.121 10.094 B (GPa) 194.24 222.79 193.77 174 ε0 8.9-9.5 6.87 9.05 ε∞ 4.0 3.53 3.90 3.82 • Buckingham potential with shell polarization on oxygen. 1O. Warschkow et al., J. Am. Ceram. Soc. 86, 1700 (2003). 2A. Walsh et al, Chemistry of Materials 21, 4962 (2009).
  7. Clusters: n = 1 0.00 eV (C2v ) 0.11 eV

    (D∞ ) 0.49 eV (C2v ) 1.69 eV (D3h )
  8. Clusters: n = 2 0.00 eV (C2h ) 1.04 eV

    (Td ) 1.22 eV (D2h ) 1.20 eV (C2v )
  9. Nanoclusters: n = 1 - 7 1. C2v 2. C2h

    3. C2s 4. D3d 5. C1 6. C1 7. C1
  10. Cluster Stability 0 2 4 6 8 1 2 3

    4 5 6 7 Energy (eV per n) (In2 O3 )n 1 E n ∝
  11. Frontier Orbitals (n = 1, 2) n = 1 n

    = 2 HOMO LUMO HOMO LUMO
  12. Frontier Orbital Separation -7 -6 -5 -4 1 2 3

    4 5 6 7 GGA HOMO-LUMO Levels (eV ) (In2 O3 )n HOMO LUMO
  13. Conclusion • Presented a new In2 O3 interatomic potential that

    describes bulk and cluster properties. • n < 4 clusters have distinct symmetric global minima. • n > 4 clusters tend towards bulk-like, low symmetry particles. • Open framework clusters have high energetic cost. • HOMO and LUMO character is consistent with bulk. Future work: • Extend to higher n. • Explore excited state properties. Acknowledgements: Materials Chemistry Consortium (Access to Hector); EU FP7 (Marie Curie Fellowship).