Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Visualizing and Measuring the Geometry of BERT
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Asei Sugiyama
September 04, 2019
Technology
0
950
Visualizing and Measuring the Geometry of BERT
NN論文を肴に酒を飲む会 #9
https://tfug-tokyo.connpass.com/event/143283/
での発表用資料です
Asei Sugiyama
September 04, 2019
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
AI との良い付き合い方を僕らは誰も知らない (WSS 2026 静岡版)
asei
1
420
AI との良い付き合い方を僕らは誰も知らない
asei
1
420
最近の生成 AI の活用事例紹介
asei
3
290
AI エージェント活用のベストプラクティスと今後の課題
asei
2
630
エージェントの継続的改善のためのメトリクス再考
asei
3
800
生成AI活用のベストプラクティス集を作ってる件
asei
1
880
GenAIOps: 生成AI時代の DevOps
asei
0
85
生成AI活用の実践解説 (速報版)
asei
1
1.7k
実践AIガバナンス
asei
3
1.1k
Other Decks in Technology
See All in Technology
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
110
3分でわかる!新機能 AWS Transform custom
sato4mi
1
300
JuliaTokaiとしてはこれが最後かもしれない(仮) for NGK2026S
antimon2
0
130
セキュリティ はじめの一歩
nikinusu
0
1.4k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
0
620
DEVCON 14 Report at AAMSX RU65: V9968, MSX0tab5, MSXDIY etc
mcd500
0
240
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
140
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
1
760
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
330
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.8k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
オープンウェイトのLLMリランカーを契約書で評価する / searchtechjp
sansan_randd
3
540
Featured
See All Featured
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
71
The Curse of the Amulet
leimatthew05
1
8k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Mind Mapping
helmedeiros
PRO
0
68
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
100
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
GitHub's CSS Performance
jonrohan
1032
470k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
GraphQLとの向き合い方2022年版
quramy
50
14k
Transcript
Visualizing and Measuring the Geometry of BERT NN จΛࡘʹञΛҿΉձ #9
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• TensorFlow Docs ༁ & ϨϏϡʔ • ػցֶशਤؑ ڞஶ
Abstract • Google PAIRͰհ͞Ε͍ͯͨจ • ࣗવݴޠॲཧʹ͓͍ͯ Transformer ʹࣅͨΞʔΩςΫνϟͷ ωοτϫʔΫۃΊͯ༗ •
ͦͷΑ͏ͳωοτϫʔΫͰࣗવݴޠॲཧʹ͓͚ΔಛΛ෦Ͱ ͲͷΑ͏ʹอ͍࣋ͯ͠Δͷ͔໌Β͔ʹ͍ͨ͠ • BERT ʹ͍ͭͯఆྔɾఆੑతͳੳΛߦͬͨ • ҙຯɾߏจతͳใΛֶश͍ͯͦ͠͏ͳ݁Ռ͕ಘΒΕͨ
࣍ 1.Context & related works <- 2.Geometry of syntax 3.Geometry
of word senses • Measurement of word sense disambiguation capability • Embedding distance and context: a concatenation experiment 4.Conclusion
Context & related works • A Structural Probe for Finding
Syntax in Word Representations (2019) ͷΞϯαʔʹͳ͍ͬͯΔ • ͜ͷจൈ͖ʹ΄ͱΜͲԿΘ͔Βͳ͍ߏ
!
2 ഒಡΊΔ͓ಘͳจ
A Structural Probe for Finding Syntax in Word Representations NN
จΛࡘʹञΛҿΉձ #9
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• TensorFlow Docs ༁ & ϨϏϡʔ • ػցֶशਤؑ ڞஶ
Abstract • Stanford େֶͷจ • ୯ޠදݱʹ͍ͭͯղੳ͕ਐΜͰ͖͍ͯΔ͕ɺߏจͷදݱ͕ ֶश͞Ε͍ͯΔ͔ʹ͍ͭͯ͜Ε·Ͱ͔֬ΊΒΕ͍ͯͳ͍ • ຊݚڀͰ structual
probe ͱ͍͏ख๏ΛఏҊ͢Δ • ͜Εneural networkͷ୯ޠදݱΛઢܗมۭͨؒ͠ʹߏจ ͕ຒΊࠐ·Ε͍ͯΔ͔ΛධՁ͢ΔͷͰ͋Δ • ELMo, BERT ͰߏจΛֶश͍ͯ͠Δͱࣔࠦ͢Δ݁ՌΛಘͨ
ݚڀͷత • ਂϞσϧͰߏจΛֶश͍ͯ͠Δͷ͔ɺͱ͍͏ٙʹ͑ ͍ͨ ͜ͷจͰઆ໌͢Δ͜ͱ • ୯ޠදݱ͔ΒߏจΛݟ͚ͭΔํ๏ʹ͍ͭͯ • ୯ޠදݱͷ࣍ݩͷࣹӨ͔Βߏจʹؔ͢ΔใΛ෮ݩ͠ɺ ධՁ͢Δํ๏ͱͦͷ۩ମྫ
(ELMo, BERT)ʹ͍ͭͯ
ख๏ͷΞΠσΞ • άϥϑͷϊʔυؒͷڑΛอͬͨ·· ϕΫτϧۭؒʹຒΊࠐΉ͜ͱΛߟ͑Δ • ͜͠Ε͕Ͱ͖͍ͯΕɺ͋Δϊʔυ ͷྡͷϊʔυ Λ୳͢͜ͱۙ ୳ࡧͱಉ͡ •
·ͨɺϞσϧ͕ਖ਼͘͠ߏΛֶश͢ ΕɺͦͷදݱۭؒͷҰ෦͚ͩΛར༻ ͢ΔͷͰͳ͍͔ • දݱۭؒͷ෦ۭؒͰɺߏͷڑ Λอ͍ͬͯΔΑ͏ͳͷΛ୳ͤྑ͍
ͭ·Γ? • ղઆهࣄ1ʹ͋Δਤ͕Θ͔Γ͍͢ • ࠨͷۭ͕ؒ୯ޠͷදݱۭؒ • ࠨਤதͷփ৭ͷฏ໘͕ߏΛදݱ͠ ͍ͯΔ෦ۭؒ • ӈଆ͕෮ݩ͞Εͨߏ
1 https://nlp.stanford.edu//~johnhew//structural-probe.html
None
The structural probe • : ൪ͷจதͷ ൪ͷ୯ޠͱͦͷϕΫτϧ • : ߏจ্Ͱͷϊʔυؒڑ
• : ෦্ۭؒͰͷڑ
Results (Table 1) • จ຺Λߟྀ͠ͳ͍Ϟσϧ(্4ͭ)ʹର͠ ͯɺจ຺Λߟྀ͢ΔϞσϧ(Լ4ͭ)ͷํ ͕ߏจΛ࠶ݱͰ͖͍ͯΔ2 2 Γड͚ߏʹ͍ͭͯɺछผํແࢹͯ͠ධՁ͍ͯ͠Δ
Results (Figure 2)
Results (Figure 4) • ࠨ: ߏจͰܭࢉͨ͠୯ޠؒڑ • ӈ: BERT(large) 16
Ͱܭࢉ͠ ͨ୯ޠؒڑ • શମతͳߏΛ࠶ݱͰ͖͍ͯͦ͏
future works • ڑͦͷͷͰͳ͘ڑͷ 2 Λ༻ ͍Δ͜ͱ͕ॏཁͩͱ࣮ݧ͔ΒΘ͔ͬͨ • ͳͥ 2
ͷํ͕ྑ͍ͷ͔Α͔͘Β ͳ͔ͬͨ
͜͜·Ͱ͕ Context
࣍ 1.Context & related works 2.Geometry of syntax <- 3.Geometry
of word senses • Measurement of word sense disambiguation capability • Embedding distance and context: a concatenation experiment 4.Conclusion
Geometry of syntax • BERT ͷֶश݁Ռʹ͍ͭͯɺ࣍ͷ 2 ͭͷ؍͔Βߦͬͨ 1.ͦͦʹཱͭදݱΛֶशͰ͖͍ͯΔͷ͔ 2.ߏจΛֶशͰ͖͍ͯΔͷ͔
Attention probes and dependency representations • BERT ͷֶश݁Ռʹؔ͢ΔఆྔධՁ (༧උ࣮ݧ) •
Penn Treebank ͷσʔλΛ༻͍ͯɺ 2 ͭͷ୯ޠͷؒͷΓड͚ߏΛఆ ͤ͞ΔλεΫ • BERT ͷग़ྗΛͱʹͯ͠ऑ͍Ϟσϧ (ઢܗࣝผػ + L2 ਖ਼ଇԽ) Ͱֶश • ݁Ռɺaccuracy ͕ 85.8% ͋ͬͨͷ Ͱɺ࣍ʹਐΜͰྑͦ͞͏ͩͱஅͯ͠ ͍Δ
Mathematics of embedding trees in Euclidean space • ϊʔυ͔ΒͳΔ ʹڑ
(తͳͷ)Λอͬͨ··ຒΊࠐΊΔ͜ ͱֶ͕తʹূ໌Ͱ͖ͨ • ·ͨɺڑͦͷͷΛ༻͍ͯ͠·͏ ͱɺڑΛอͭຒΊࠐΈ͕Ͱ͖ͳ͍Α ͏ͳ߹͕͋Δ͜ͱࣔ͞Εͨ • ͜ΕʹΑΓ͕॓ղܾͨ͠ͱ͍ͯ͠Δ
ͭ·Γ? • blog هࣄͰৄ͘͠ղઆ͞Ε͍ͯΔͷ Ͱɺৄࡉ͕ؾʹͳͬͨΒ͔͜͜ΒೖΔ ͷ͕͓͢͢Ί • https://pair-code.github.io/ interpretability/bert-tree/
Visualization of parse tree embeddings • ߏจͷڑΛอͭΑ͏ͳຒΊࠐΈͱ BERT ͱͷ݁Ռ͕ྨࣅ
Visualization of parse tree embeddings • ߏจΛຒΊࠐΜͩ݁ՌͱɺBERT ͷ ֶश݁ՌͱͰڑΛൺֱ •
ൺΛͱͬͨΛ৭Ͱදࣔ • BERT / ਅͷߏจ Λදࣔ • ͍ઢߏจ্Ͱܨ͕Γ͕ͳ͔ͬ ͕ͨɺBERT ͷֶश݁ՌͰۙ͘ͳͬ ͨͷ • part/of, sale/of ͳͲͻͱ·ͱ· ΓͰѻ͏ͷ͕ྑͦ͞͏ͳͷ͍ۙ
None
Visualization of parse tree embeddings • ߏจΛຒΊࠐΜͩ݁ՌͱɺBERT ͷ ֶश݁ՌͱͰڑͷൺͷΛݕ౼ •
ґଘؔ͝ͱʹूܭͨ݁͠Ռ͕ӈਤ • ؔ͝ͱʹ 1.2 ͔Β 2.5 ·Ͱ͘ ͍ͯ͠Δ • ؔੑʹରͯ͠ఆྔతͳ؍Λ BERT ͕Ճ͍͑ͯΔ͜ͱΛࣔࠦ͢Δ݁Ռ
࣍ 1.Context & related works 2.Geometry of syntax 3.Geometry of
word senses <- • Measurement of word sense disambiguation capability • Embedding distance and context: a concatenation experiment 4.Conclusion
Geometry of word senses • ߏจ͚ͩͰͳ͘୯ޠͷҙຯΛଊ͑ΒΕ͍ͯΔ͔ݕ౼ • ҙຯΛද͢෦ۭ͕ؒಘΒΕͳ͍͔࣮ݧ • Ͳ͏ΒಘΒΕͨ
! • จ຺ΛਓతʹௐઅͰ͖ͳ͍͔࣮ݧ • Ͱ͖ͳ͔ͬͨͲ͜Ζ͔ѱԽͨ͠
Measurement of word sense disambiguation capability • BERT ͷग़ྗΛ UMAP
ͰՄࢹԽ • ಉ͡ "die" ʹରͯ͠ෳͷҙຯΛ ͭΫϥελ͕Ͱ͖͍ͯΔ • kNN ΛͬͯޠٛᐆດੑղফλεΫΛ ߦͬͨ݁Ռ accuracy 71.1% (SOTA)
None
ҙຯͷใͷ • "structural probe" ͱಉ༷ʹͯ͠ ҙຯΛද͢෦ۭؒΛநग़ • ߏจͱͷڑͷࠩͰͳ͘ɺ୯ޠ ͷҙຯؒͰͷίαΠϯྨࣅΛར༻ (ৄࡉෆ໌)
• ࣍ݩݮલͷ accuracy 71.1% • ࣍ݩݮΛߦ͏ͱগ্͕͠Δ • ҙຯͷ෦ۭؒͱ͍͏ͷ͕͋Γͦ͏
Embedding distance and context: a concatenation experiment • จ຺Λҙਤతʹૢ࡞͢Δ͜ͱͰྑ͍݁ ՌΛಘΒΕͳ͍͔࣮ݧ
• ಛఆͷҙຯ͋Δ୯ޠΛ༻͍͍ͯΔද తͳจΛݟ͚ͭग़͠ɺಉ͡ҙຯͰಉ͡ ୯ޠΛ༻͍͍ͯΔจʹ࿈݁ͨ͠ • "I went to Edo" ͕දతͳจ ͳ߹ɺ"He went to Edo"ʹ ͚ͯ͠"He went to Edo and I went to Edo" ͱ͍͏จΛ࡞Δ
Embedding distance and context: a concatenation experiment • ԣ࣠: BERT
ͷϨΠϠʔ • ॎ࣠: ҙຯͷҧ͏Ϋϥελͷத৺ͱͷ ڑͷൺతͳͷ (େ͖͍΄ͲΑ͍) • දతͳจΛ͚Ճ͑ͨ߹ɺͦͷ୯ ޠͷҙຯΛΑΓΑ͘Ͱ͖Δ͔ͱ ࢥͬͨΒͦΜͳ͜ͱͳ͔ͬͨ
࣍ 1.Context & related works 2.Geometry of syntax 3.Geometry of
word senses • Measurement of word sense disambiguation capability • Embedding distance and context: a concatenation experiment 4.Conclusion <-
Conclusion • "structural probe" ʹֶతͳҙຯ͚Λߦͬͨ • ߏจͷຒΊࠐΈͱBERTͷֶश݁ՌΛൺֱͨ͠ͱ͜ΖɺߏจΛ ֶश͍ͯͦ͠͏ͳ݁Ռ͕ಘΒΕͨ • ߏจΛֶश͢ΔۭؒͱผʹɺҙຯΛֶश͢Δۭ͕ؒ͋Γͦ͏ͳ
͜ͱ͕Θ͔ͬͨ • ଞʹࣗવݴޠతͳҙຯͰॏཁͳ෦ۭ͕ؒ͋Δ͔ࠓޙͷݚڀ ՝
࠷ޙʹ • ࠓͷΠϕϯτͷ෮श • TensorFlow User Group Tokyo • NNจΛࡘʹञΛҿΉձ
None
None
TensorFlow User Group Tokyo NNจΛࡘʹञΛҿΉձ #9