Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Mood-Based Micro-Blogging in Distributed Software Engineering

Mood-Based Micro-Blogging in Distributed Software Engineering

Talk presented at MSR 2013, the 10th Working Conference on Mining Software Repositories.

Paper: http://aspic.nl/publications/DullemondGamerenStoreyDeursenMSR2013.pdf

Arie van Deursen

May 19, 2013
Tweet

More Decks by Arie van Deursen

Other Decks in Research

Transcript

  1. Mood-­‐Based  Micro-­‐Blogging  
    Kevin  Dullemond,    Ben  van  Gameren,    
    Margaret-­‐Anne  Storey,  Arie  van  Deursen  
    Mining  So;ware  Repositories  (MSR),  San  Francisco,  May  2013   1  

    View Slide

  2. Micro-­‐Blogs  
    •  “Short  messages  people  use  to  provide  updates  
    on  their  ac5vi5es,  observa5ons  and  interes5ng  
    content,  directly  or  indirectly  to  others”  
    •  Use  in  so;ware  engineering:  
    – Support  awareness?  
    – Support  distributed  working?  
    Ehrlich  et  al:  
    “Microblogging  inside  
    and  outside  the  
    workplace”,  ICWSM,  2010  
    2  

    View Slide

  3. IHomer  Creates  WeHomer  
    WeHomer  @  iHomer:  
    Miro-­‐Blogging  with  Moods  
     
    >L      L      K      J      >J  
    3  

    View Slide

  4. Today’s  MSR  keynote  
    4  

    View Slide

  5. 5  
    I’m  going  to  be  a  daddy!    :-­‐D  
    Will  be  partly  available  today;  Son  is  sick  at  home  >L  
    Working  on  our  Linux  servers  today  –    
    some  services  may  experience  outages  J  
    On  my  way  to  customer  X  for  first  live  test  :-­‐D  

    View Slide

  6. 1  year  usage  data;  
    2500  messages  
    Mood  is  actually  
    indicated  
    6  

    View Slide

  7. Approach  
    •  Try  to  understand:  
    – Role  of  micro-­‐blogging  in  
    distributed  work  @  home  
    – Role  of  “mood”  
    •  Qualitadve  analysis  
    – Coding  2500  posts    
    from  20  users  
    – Interviews  with  5  users  
    Content
    Information about
    a person
    Health
    Sentiment
    Personal
    Experience
    Information about
    technology
    Technical
    Knowledge
    Information about
    task articulation
    work
    Work Planning
    Work Assignment
    Supplies
    Non-Technical
    Infrastructure
    Technical
    Infrastructure
    Intern
    Technical
    Infrastructure
    Extern
    Information about
    customer
    relations
    Relation
    Project
    Commissioning
    Information about
    entrepreneurial
    tasks
    Prospects
    Company
    Meeting
    Applicant
    Invoicing
    7  

    View Slide

  8. “Nature”:    
    Most  Posts  Are  Posidve  
    8  
    Manual  sendment  analysis.  
    Largely  in  line  with  indicated  “happiness”  

    View Slide

  9. “Form”:    
    9%  of  Posts  is  a  Quesdon  
    9  
    Ehrlich  et  al  BlueTwit  analysis:  13%  quesdons    

    View Slide

  10. “Intendon”:    
    Personal,  Work,  Coordinadon  
    10  
    “Task  ardculadon”  work  
    Home  /  work  balance  

    View Slide

  11. “Content”:    
    Intra-­‐  And  Inter-­‐Team  Topics  
    •  Intra-­‐team  (4  teams,  2-­‐7  members)  
    – Directed  messages:  more  within  team  
    – Planning  and  coordinadon  
    •  Full  organizadon  (20  people):  
    – New  employees,    new  prospects,  new  business  
    direcdons,  social  events  
    – Planning  and  coordinadon  
    •  “Glue”  between  people  working  at  home.  
    11  

    View Slide

  12. The  Tuesday  Effect  
    12  
    “There  is  no  halfsies  in  a  distributed  team  …  
    If  even  one  person  of  the  team  is  remote,  very  single  person  has  to  
    start  communica5ng  on  line.”  –  Fullerton  /  StackExchange  

    View Slide

  13. Discussion  
    •  Social  interacdons  affect  so;w.  development  
    – Mining  research  must  be  aware  of  them!  
    – To  what  extent  should  we  mine  them?  
    •  Mood  indicators?  
    – Issues,  feature  requests,  commits,  pull  requests?  
    •  Sendment  analysis?  –  Anger  versus  Joy  
    13  

    View Slide

  14. Conclusions  
    •  Micro-­‐blogging  with  mood  indicators:  
    – Share  knowledge  and  emo5ons  like    
    you  are  co-­‐located  
    – Create  and  sustain  a  feeling  of  connectedness  
    (conform  Zhao  et  al,  ICWSM  2009)  
    – Beyond  individual  projects  
    •  All  or  nothing  proposidon  (Tuesday  effect)  
    14  

    View Slide