Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルチモーダル学習
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Ayumu
March 28, 2019
Technology
0
180
マルチモーダル学習
2019/03/28
長岡技術科学大学 自然言語処理研究室
学部4年 守谷 歩
Ayumu
March 28, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
190
B3ゼミ 自然言語処理におけるCNN
ayumum
0
130
言語処理年次大会報告
ayumum
0
120
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
190
ニューラルネット実践
ayumum
0
140
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
パーセプトロンとニューラルネット1
ayumum
0
120
Other Decks in Technology
See All in Technology
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
230
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
820
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
Agent Skils
dip_tech
PRO
0
120
Context Engineeringの取り組み
nutslove
0
370
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
今日から始めるAmazon Bedrock AgentCore
har1101
4
410
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
970
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
380
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
Featured
See All Featured
From π to Pie charts
rasagy
0
120
The Art of Programming - Codeland 2020
erikaheidi
57
14k
The agentic SEO stack - context over prompts
schlessera
0
640
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Code Review Best Practice
trishagee
74
20k
How to make the Groovebox
asonas
2
1.9k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
BBQ
matthewcrist
89
10k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
Transcript
マルチモーダル学習 2019/03/28 長岡技術科学大学 自然言語処理研究室 学部4年 守谷 歩 概要、タスク、問題点
言語処理におけるマルチモーダル学習 ⚫複数のモダリティを含む処理を行いモデル構築 ⚫人工知能を使って言語処理をするなら今かなりの精度が出てる画 像の情報なども用いたい。 ⚫最近の研究では、対訳コーパスに画像情報を付加し機械翻訳の 精度を上げるといった面で使われている。
マルチモーダル学習のタスク ⚫唇の画像から何を話しているか推定する(Lip Reading) ⚫手話を言語情報に置き換える ⚫テキストの情報からどんな画像かを推定する ⚫人の画像情報と話している内容から感情推定する ⚫映像からリアルタイムで実況を生成する。
画像説明生成 ⚫CNNの画像のエンコーダをRNNのテキストのデコーダと接続し、 RNNの誤差を誤差伝搬法を用いてCNNまでフィードバックさせる
動画像キャプショニング ⚫CNNで動画のフレームごとに特徴量抽出し、取った特徴量を時系 列データとしてRNNへ入力
画像スタイル変換 ⚫CNNで動画のフレームごとに特徴量抽出し、取った特徴量を時系 列データとしてRNNへ入力
マルチモーダル学習の問題点 ⚫例えばリアルタイムで実況を生成するタスクの場合 ⚫モーダル間の関連性をどう定義するか ⚫変換結果をどう評価するか ⚫複数のモダリティの情報を組み合わせて予測できないか ⚫モダリティ間の知識の転移を行えないか
マルチモーダル学習の今後の展開 ⚫Vision-and-Language Navigationといった、ロボットを自然言語で目 的地に誘導するといったようなタスクなどで期待されている。 ⚫音声の特徴などを用いた生体認識などのタスクでも期待されてい る。
参考資料 ⚫東京大学、中山 英樹 「マルチモーダル深層学習の発展」 http://must.c.u-tokyo.ac.jp/sigam/sigam20/sigam20sp01.pdf ⚫DeNA、森紘一郎「マルチモーダル深層学習の研究動向」 https://www.slideshare.net/f2forest/ss-108087799 ⚫東京大学、鈴木雅大「深層生成モデルを用いたマルチモーダル学習」 https://www.slideshare.net/masa_s/ss- 62920389
⚫Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models https://arxiv.org/pdf/1411.2539.pdf ⚫Show and Tell: A Neural Image Caption Generato https://arxiv.org/pdf/1411.4555.pdf ⚫Deep Visual-Semantic Alignments for Generating Image Descriptions https://cs.stanford.edu/people/karpathy/deepimagesent/ ⚫Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks https://junyanz.github.io/CycleGAN/