Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルチモーダル学習
Search
Ayumu
March 28, 2019
Technology
0
170
マルチモーダル学習
2019/03/28
長岡技術科学大学 自然言語処理研究室
学部4年 守谷 歩
Ayumu
March 28, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
110
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
120
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
180
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
200
パーセプトロンとニューラルネット1
ayumum
0
110
Other Decks in Technology
See All in Technology
【Oracle Cloud ウェビナー】クラウド導入に「専用クラウド」という選択肢、Oracle AlloyとOCI Dedicated Region とは
oracle4engineer
PRO
3
130
許しとアジャイル
jnuank
1
140
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
250
[Codex Meetup Japan #1] Codex-Powered Mobile Apps Development
korodroid
2
220
LLMアプリの地上戦開発計画と運用実践 / 2025.10.15 GPU UNITE 2025
smiyawaki0820
1
400
Azure Well-Architected Framework入門
tomokusaba
1
350
Vibe Coding Year in Review. From Karpathy to Real-World Agents by Niels Rolland, CEO Paatch
vcoisne
0
120
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
190
カンファレンスに託児サポートがあるということ / Having Childcare Support at Conferences
nobu09
1
530
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
290
衛星画像超解像化によって実現する2D, 3D空間情報の即時生成と“AI as a Service”/ Real-time generation spatial data enabled_by satellite image super-resolution
lehupa
0
140
プロポーザルのコツ ~ Kaigi on Rails 2025 初参加で3名の登壇を実現 ~
naro143
1
210
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
For a Future-Friendly Web
brad_frost
180
9.9k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Leading Effective Engineering Teams in the AI Era
addyosmani
1
260
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
GitHub's CSS Performance
jonrohan
1032
470k
Producing Creativity
orderedlist
PRO
347
40k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
900
The Pragmatic Product Professional
lauravandoore
36
6.9k
Docker and Python
trallard
46
3.6k
Transcript
マルチモーダル学習 2019/03/28 長岡技術科学大学 自然言語処理研究室 学部4年 守谷 歩 概要、タスク、問題点
言語処理におけるマルチモーダル学習 ⚫複数のモダリティを含む処理を行いモデル構築 ⚫人工知能を使って言語処理をするなら今かなりの精度が出てる画 像の情報なども用いたい。 ⚫最近の研究では、対訳コーパスに画像情報を付加し機械翻訳の 精度を上げるといった面で使われている。
マルチモーダル学習のタスク ⚫唇の画像から何を話しているか推定する(Lip Reading) ⚫手話を言語情報に置き換える ⚫テキストの情報からどんな画像かを推定する ⚫人の画像情報と話している内容から感情推定する ⚫映像からリアルタイムで実況を生成する。
画像説明生成 ⚫CNNの画像のエンコーダをRNNのテキストのデコーダと接続し、 RNNの誤差を誤差伝搬法を用いてCNNまでフィードバックさせる
動画像キャプショニング ⚫CNNで動画のフレームごとに特徴量抽出し、取った特徴量を時系 列データとしてRNNへ入力
画像スタイル変換 ⚫CNNで動画のフレームごとに特徴量抽出し、取った特徴量を時系 列データとしてRNNへ入力
マルチモーダル学習の問題点 ⚫例えばリアルタイムで実況を生成するタスクの場合 ⚫モーダル間の関連性をどう定義するか ⚫変換結果をどう評価するか ⚫複数のモダリティの情報を組み合わせて予測できないか ⚫モダリティ間の知識の転移を行えないか
マルチモーダル学習の今後の展開 ⚫Vision-and-Language Navigationといった、ロボットを自然言語で目 的地に誘導するといったようなタスクなどで期待されている。 ⚫音声の特徴などを用いた生体認識などのタスクでも期待されてい る。
参考資料 ⚫東京大学、中山 英樹 「マルチモーダル深層学習の発展」 http://must.c.u-tokyo.ac.jp/sigam/sigam20/sigam20sp01.pdf ⚫DeNA、森紘一郎「マルチモーダル深層学習の研究動向」 https://www.slideshare.net/f2forest/ss-108087799 ⚫東京大学、鈴木雅大「深層生成モデルを用いたマルチモーダル学習」 https://www.slideshare.net/masa_s/ss- 62920389
⚫Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models https://arxiv.org/pdf/1411.2539.pdf ⚫Show and Tell: A Neural Image Caption Generato https://arxiv.org/pdf/1411.4555.pdf ⚫Deep Visual-Semantic Alignments for Generating Image Descriptions https://cs.stanford.edu/people/karpathy/deepimagesent/ ⚫Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks https://junyanz.github.io/CycleGAN/