$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルチモーダル学習
Search
Ayumu
March 28, 2019
Technology
0
180
マルチモーダル学習
2019/03/28
長岡技術科学大学 自然言語処理研究室
学部4年 守谷 歩
Ayumu
March 28, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
パーセプトロンとニューラルネット1
ayumum
0
120
Other Decks in Technology
See All in Technology
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
190
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
410
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
AI との良い付き合い方を僕らは誰も知らない
asei
0
260
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
5
2.1k
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
140
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
240
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
180
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
950
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
240
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1k
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
250
Featured
See All Featured
A Soul's Torment
seathinner
1
2k
Building an army of robots
kneath
306
46k
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
78
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
YesSQL, Process and Tooling at Scale
rocio
174
15k
Bash Introduction
62gerente
615
210k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
4 Signs Your Business is Dying
shpigford
186
22k
30 Presentation Tips
portentint
PRO
1
170
Transcript
マルチモーダル学習 2019/03/28 長岡技術科学大学 自然言語処理研究室 学部4年 守谷 歩 概要、タスク、問題点
言語処理におけるマルチモーダル学習 ⚫複数のモダリティを含む処理を行いモデル構築 ⚫人工知能を使って言語処理をするなら今かなりの精度が出てる画 像の情報なども用いたい。 ⚫最近の研究では、対訳コーパスに画像情報を付加し機械翻訳の 精度を上げるといった面で使われている。
マルチモーダル学習のタスク ⚫唇の画像から何を話しているか推定する(Lip Reading) ⚫手話を言語情報に置き換える ⚫テキストの情報からどんな画像かを推定する ⚫人の画像情報と話している内容から感情推定する ⚫映像からリアルタイムで実況を生成する。
画像説明生成 ⚫CNNの画像のエンコーダをRNNのテキストのデコーダと接続し、 RNNの誤差を誤差伝搬法を用いてCNNまでフィードバックさせる
動画像キャプショニング ⚫CNNで動画のフレームごとに特徴量抽出し、取った特徴量を時系 列データとしてRNNへ入力
画像スタイル変換 ⚫CNNで動画のフレームごとに特徴量抽出し、取った特徴量を時系 列データとしてRNNへ入力
マルチモーダル学習の問題点 ⚫例えばリアルタイムで実況を生成するタスクの場合 ⚫モーダル間の関連性をどう定義するか ⚫変換結果をどう評価するか ⚫複数のモダリティの情報を組み合わせて予測できないか ⚫モダリティ間の知識の転移を行えないか
マルチモーダル学習の今後の展開 ⚫Vision-and-Language Navigationといった、ロボットを自然言語で目 的地に誘導するといったようなタスクなどで期待されている。 ⚫音声の特徴などを用いた生体認識などのタスクでも期待されてい る。
参考資料 ⚫東京大学、中山 英樹 「マルチモーダル深層学習の発展」 http://must.c.u-tokyo.ac.jp/sigam/sigam20/sigam20sp01.pdf ⚫DeNA、森紘一郎「マルチモーダル深層学習の研究動向」 https://www.slideshare.net/f2forest/ss-108087799 ⚫東京大学、鈴木雅大「深層生成モデルを用いたマルチモーダル学習」 https://www.slideshare.net/masa_s/ss- 62920389
⚫Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models https://arxiv.org/pdf/1411.2539.pdf ⚫Show and Tell: A Neural Image Caption Generato https://arxiv.org/pdf/1411.4555.pdf ⚫Deep Visual-Semantic Alignments for Generating Image Descriptions https://cs.stanford.edu/people/karpathy/deepimagesent/ ⚫Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks https://junyanz.github.io/CycleGAN/