Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
Search
Ayumu
March 05, 2019
Technology
0
180
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
2019/03/05
長岡技術科学大学 自然言語処理研究室
学部4年 守谷 歩
Ayumu
March 05, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
170
マルチモーダル学習
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
110
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
120
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
200
パーセプトロンとニューラルネット1
ayumum
0
110
Other Decks in Technology
See All in Technology
能登半島災害現場エンジニアクロストーク 【JAWS FESTA 2025 in 金沢】
ditccsugii
0
430
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
100
オープンソースでどこまでできる?フォーマル検証チャレンジ
msyksphinz
0
130
CoRL 2025 Survey
harukiabe
0
130
プロダクトのコードから見るGoによるデザインパターンの実践 #go_night_talk
bengo4com
1
2.4k
ComposeではないコードをCompose化する case ビズリーチ / DroidKaigi 2025 koyasai
visional_engineering_and_design
0
100
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
310
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
160
Git in Team
kawaguti
PRO
3
350
from Sakichi Toyoda to Agile
kawaguti
PRO
1
110
Adminaで実現するISMS/SOC2運用の効率化 〜 アカウント管理編 〜
shonansurvivors
4
440
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
240
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
431
66k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Designing for humans not robots
tammielis
254
26k
The Cult of Friendly URLs
andyhume
79
6.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Cost Of JavaScript in 2023
addyosmani
54
9k
RailsConf 2023
tenderlove
30
1.2k
Designing Experiences People Love
moore
142
24k
The Pragmatic Product Professional
lauravandoore
36
6.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Visualization
eitanlees
149
16k
Transcript
二値符号予測と誤り訂正を 用いたニューラル翻訳モデル 2019/03/05 長岡技術科学大学 自然言語処理研究室 学部4年 守谷 歩 1
文献 ⚫「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」 ⚫小田 悠介, Philip Arthur, Graham Neubig, 吉野 幸一郎,
中村 哲 ⚫二値符号予測と誤り訂正を用いたニューラル翻訳モデル, 自然言 語処理, 2018, 25 巻, 2 号, p. 167-199, 公開日 2018/06/15, Online ISSN 2185-8314, Print ISSN 1340- 7619, https://doi.org/10.5715/jnlp.25.167, https://www.jstage.jst.go .jp/article/jnlp/25/2/25_167/_article/-char/ja, 抄録: 2
概要 ⚫近年の機械翻訳ではエンコーダ、デコーダ、注釈機構からなる ニューラル翻訳モデルが研究されている。 ⚫既存の方法で表現力の高いニューラル翻訳モデルの出力層では ソフトマックス演算を行っており、これは、語彙に含まれる全単語の スコアを隠れ層の一次結合として計算するため、計算量が語彙サ イズに比例するため軽量化したい。 ⚫また、単純に二値符号のみを用いる方法だと翻訳精度が従来の 手法と比べて大幅に低下してしまう。 3
概要 ⚫従来の方法でも以下の4つの観点が計算量を軽量化するために 需要だと考えられる。 ⚫翻訳精度 ⚫空間効率(使用メモリ量) ⚫時間効率(実行速度) ⚫並列計算との親和性 ⚫軽量化をするために従来のソフトマックスモデルを部分的に導入 し、高頻度語と低頻度語を分離し、学習させる手法を提案。また、 二値符号の頑健性を向上させるため、誤り訂正符号、畳み込み符
号による冗長化を施す。 4
単純なソフトマックスモデルの定式化 ⚫語彙サイズV、同じ数の次元の連続空間ℝ ⚫単語ID ∈ { ∈ ℕ|1 ≤ ≤ }に対応する次元を1、それ以外の次元を
0とする単位ベクトル () ∈ ℝを単語の表現とみなす ⚫部分空間 ℝ = ∈ ℝ ∧ ∀. 0 ≤ < 1 ∧ σ =1 = 1 ⚫損失関数の計算 , = , = − + log =1 = σ =1 = ℎ ℎ + 5
二値符号を用いた単語の表現手法 6
二値符号を用いた単語の表現手法 ⚫単語に対応するビット列 = b1 w , b2 w , …
, bB w V = 0,1 B ⚫各ビットが1となる確率 ℎ = 1 ℎ , 2 ℎ , … , ℎ ∈ 0,1 ⚫ロジスティック回帰モデル ℎ = ℎ ℎ + , = 1 1 + exp(−) ⚫確率q(h)における各ビットごとの確率の積 Pr ℎ = ෑ =1 ℎ + 1 − 1 − ℎ 7
二値符号モデルの損失関数、計算量 ⚫損失関数 損失関数の満たすべき条件 , ቊ =∈ = ≥∈ ℎ 損失関数は、先行研究より二乗誤差を用いるほうが精度が向上
, = =1 B − 2 ⚫計算量 8
ソフトマックスと二値符号予測の 混合モデル ⚫生成確率 Pr ℎ = ቊ , < ∗
, ℎ ℎ = exp σ =1 exp , = ℎ ℎ + , ℎ = ෑ =1 ( + 1 − 1 − ) ⚫損失関数 = ൝ , < + , ℎ = , , = , 9
誤り訂正符号の適用 ⚫単純な二値符号予測モデル、混合モデルは二値符号自体の頑健性 を考慮していないため、ビット誤りを許さない形となっている。 ⚫ビット列に対して、何らかの冗長性を導入する 10
実験設定 ⚫コーパスはASPECとBTECを使用 ⚫英語のトークン化にはMoses、日本語のトークン化に はKyTeaを使用した。 ⚫ニューラルネットワークの構築にはDyNetを使用した。 ⚫すべてのモデルは1つのGPUを用いて学習した。また、 実行時間を検証するためにGPU上とCPU上の両方で 行った。 ⚫翻訳モデルのエンコーダには双方向RNN、注意機構 及びデコーダはConcat
Global Attention モデルを使 用した。また、RNNには入力、忘却、出力ゲートを含 む1層のLSTMを使用した。 ⚫ニューラルネットワークの学習にはAdam最適化機を 使用し、そのハイパーパラメータは = 0.001, 1 = 0.9, 2 = 0.999, = 10−8 ⚫モデルの評価にはBLUEを使用 11
実験結果 BLEUと計算速度 12
実験結果 学習の推移 13
翻訳精度への影響 14
単語出現頻度と推定精度の関係 15
今後への展開 ⚫翻訳モデルにより適した単語のビット列への割り当て手法 ⚫ニューラル翻訳モデルの学習により適した形の誤り訂正手法の 開発 ⚫入力装側の単語ベクトルも二値符号に制約し、モデルのパラメー タを削った場合の翻訳精度は同様に達成できるのか ⚫翻訳モデルの内部状態やパラメータが獲得した表現に関する調 査 16