$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
パーセプトロンとニューラルネット1
Search
Ayumu
February 14, 2019
Technology
0
120
パーセプトロンとニューラルネット1
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 14, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
マルチモーダル学習
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
Other Decks in Technology
See All in Technology
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
210
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
690
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
文字列の並び順 / Unicode Collation
tmtms
3
600
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
150
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.4k
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
250
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
750
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
170
【AWS re:Invent 2025速報】AIビルダー向けアップデートをまとめて解説!
minorun365
4
530
SREには開発組織全体で向き合う
koh_naga
0
360
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
190
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
4 Signs Your Business is Dying
shpigford
186
22k
Into the Great Unknown - MozCon
thekraken
40
2.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Facilitating Awesome Meetings
lara
57
6.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Done Done
chrislema
186
16k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Producing Creativity
orderedlist
PRO
348
40k
Transcript
パーセプトロンと ニューラルネット1 2019/02/14 長岡技術科学大学 自然言語処理研究室 学部3年 守谷 歩 パーセプトロン、多重パーセプトロン、ニューラ ルネット、活性化関数
パーセプトロンとは ⚫複数の入力を一つの出力にするもの。 ⚫出力の値は1か0 y x1 x2 w1 w2 = ቊ
0 (1 ∗ 1 + 2 ∗ 2 ≤ 1 (1 ∗ 1 + 2 ∗ 2 > は閾値
論理回路みたいに考えられるのなら ⚫AND ⚫OR y x1 x2 w1 w2 y x1
x2 w1 w2 x1 x2 y 0 0 0 0 1 0 1 1 1 1 0 0 x1 x2 Y 0 0 0 0 1 1 1 1 1 1 0 1 パーセプトロン ቊ 0 (1 ∗ 1 + 2 ∗ 2) ≤ 1 (1 ∗ 1 + 2 ∗ 2) > は閾値 {1 = 0.5, 2 = 0.5, = 0.7(0.5よりも大きい)} {1 = 0.5, 2 = 0.5, = 0.3(0.5より小さい)}
Pythonで実装 パーセプトロンAND,OR ⚫コード ⚫結果
実装したパーセプトロンを図示化 パーセプトロン = ቊ 0 (1 ∗ 1 + 2
∗ 2) ≤ 1 (1 ∗ 1 + 2 ∗ 2) > は閾値 これを = −(:バイアス)とすると = ቊ 0 1 ∗ 1 + 2 ∗ 2 + ≤ 0 1 1 ∗ 1 + 2 ∗ 2 + > 0 y x1 x2 w1 w2 ORゲートの重み {1 = 1, 2 = 1, = 0.5}
XORおさらい ⚫論理回路の知識を使うとXORはANDゲート、NANDゲート、ORゲー トから実装することができる。 x1 x2 y 0 0 0 0
1 1 1 1 0 1 0 1 x1 s2 s1 x2 x1 x2 y y
多重パーセプトロン ⚫2段階にすることでXORみたいな状態でも表現可能 ⚫この時の一番左を第0層として扱い、出力まで層を増やせる ⚫XORは2層のパーセプトロン s1 x1 x2 s1 y 第0層
第1層 第2層
⚫コード ⚫結果 Pythonで実装 多重パーセプトロンXOR
⚫パーセプトロンでいろいろな領域に分ける方法は分かったが具体 的な重みは自動的に計算できないのか? ⚫ニューラルネットは重みをデータから学習する性質がある ニューラルネット実装への導入
⚫入力層、中間層(隠れ層)、出力層に分けられたネットワーク ⚫重みをもつ層を数えることが多い(例:中間層が5個あったら6層 ネットワーク) ニューラルネットとは 入力層 中間層 出力層
⚫パーセプトロンの動作を関数h(x)にする = ቊ 0 1 ∗ 1 + 2 ∗
2 + ≤ 0 1 1 ∗ 1 + 2 ∗ 2 + > 0 (w1,w2:重み x1,x2:入力 b:バイアス) = h(b+w1∗x1+w2∗x2) ℎ = ቊ 0 ( ≤ 0) 1 ( > 0) パーセプトロンの式変形 h(x) h(x) x1 x2 w1 w2 1 y b
⚫さっき導出した活性化関数は閾値を境に出力が切り替わる関数: ステップ関数である。 ⚫パーセプトロンはステップ関数を使っている。 ⚫ステップ関数ℎ = ቊ 0 ( ≤ 0)
1 ( > 0) 活性化関数 h(x) ステップ関数
⚫ニューラルネットはパーセプトロンと違い活性化関数にシグモイド 関数などの関数を使っている。 ⚫シグモイド関数では、値を1,0の2値でなく、1から0の値を使ってい る ⚫シグモイド関数ℎ = 1 1+exp(−) 活性化関数 h(x)
シグモイド関数
⚫ニューラルネットではシグモイド関数のほかにReLU関数といった関 数を使用することがある。 ⚫ReLU関数は1から0の値に変換せず、0から入力xまでといった値を 使っている。 ⚫ReLU関数ℎ = ቊ ( ≥ 0)
0 ( < 0) 活性化関数 h(x) ReLU関数
⚫パーセプトロンは複数の入力を0,1の2値で返すことができる。 ⚫ニューラルネットはパーセプトロンと違って重みが自動的につくら れる。 ⚫出力を閾値よりも高いかどうかで見るパーセプトロンは活性化関 数としてステップ関数が使用されている。 ⚫出力が、入力が小さい場合0に近い値、入力が大きい場合1に近 い値を返す活性化関数がシグモイド関数である ⚫入力が0を超えていたらそのまま出力し、それ以外なら0にする活 性化関数がReLU関数である。 まとめ