Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
パーセプトロンとニューラルネット1
Search
Ayumu
February 14, 2019
Technology
0
120
パーセプトロンとニューラルネット1
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 14, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
190
マルチモーダル学習
ayumum
0
180
B3ゼミ 自然言語処理におけるCNN
ayumum
0
130
言語処理年次大会報告
ayumum
0
120
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
190
ニューラルネット実践
ayumum
0
140
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
Other Decks in Technology
See All in Technology
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
AI駆動開発を事業のコアに置く
tasukuonizawa
1
270
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
350
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
310
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
Featured
See All Featured
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
66
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
190
From π to Pie charts
rasagy
0
120
How to train your dragon (web standard)
notwaldorf
97
6.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Code Reviewing Like a Champion
maltzj
527
40k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
55
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
99
Building a Scalable Design System with Sketch
lauravandoore
463
34k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Transcript
パーセプトロンと ニューラルネット1 2019/02/14 長岡技術科学大学 自然言語処理研究室 学部3年 守谷 歩 パーセプトロン、多重パーセプトロン、ニューラ ルネット、活性化関数
パーセプトロンとは ⚫複数の入力を一つの出力にするもの。 ⚫出力の値は1か0 y x1 x2 w1 w2 = ቊ
0 (1 ∗ 1 + 2 ∗ 2 ≤ 1 (1 ∗ 1 + 2 ∗ 2 > は閾値
論理回路みたいに考えられるのなら ⚫AND ⚫OR y x1 x2 w1 w2 y x1
x2 w1 w2 x1 x2 y 0 0 0 0 1 0 1 1 1 1 0 0 x1 x2 Y 0 0 0 0 1 1 1 1 1 1 0 1 パーセプトロン ቊ 0 (1 ∗ 1 + 2 ∗ 2) ≤ 1 (1 ∗ 1 + 2 ∗ 2) > は閾値 {1 = 0.5, 2 = 0.5, = 0.7(0.5よりも大きい)} {1 = 0.5, 2 = 0.5, = 0.3(0.5より小さい)}
Pythonで実装 パーセプトロンAND,OR ⚫コード ⚫結果
実装したパーセプトロンを図示化 パーセプトロン = ቊ 0 (1 ∗ 1 + 2
∗ 2) ≤ 1 (1 ∗ 1 + 2 ∗ 2) > は閾値 これを = −(:バイアス)とすると = ቊ 0 1 ∗ 1 + 2 ∗ 2 + ≤ 0 1 1 ∗ 1 + 2 ∗ 2 + > 0 y x1 x2 w1 w2 ORゲートの重み {1 = 1, 2 = 1, = 0.5}
XORおさらい ⚫論理回路の知識を使うとXORはANDゲート、NANDゲート、ORゲー トから実装することができる。 x1 x2 y 0 0 0 0
1 1 1 1 0 1 0 1 x1 s2 s1 x2 x1 x2 y y
多重パーセプトロン ⚫2段階にすることでXORみたいな状態でも表現可能 ⚫この時の一番左を第0層として扱い、出力まで層を増やせる ⚫XORは2層のパーセプトロン s1 x1 x2 s1 y 第0層
第1層 第2層
⚫コード ⚫結果 Pythonで実装 多重パーセプトロンXOR
⚫パーセプトロンでいろいろな領域に分ける方法は分かったが具体 的な重みは自動的に計算できないのか? ⚫ニューラルネットは重みをデータから学習する性質がある ニューラルネット実装への導入
⚫入力層、中間層(隠れ層)、出力層に分けられたネットワーク ⚫重みをもつ層を数えることが多い(例:中間層が5個あったら6層 ネットワーク) ニューラルネットとは 入力層 中間層 出力層
⚫パーセプトロンの動作を関数h(x)にする = ቊ 0 1 ∗ 1 + 2 ∗
2 + ≤ 0 1 1 ∗ 1 + 2 ∗ 2 + > 0 (w1,w2:重み x1,x2:入力 b:バイアス) = h(b+w1∗x1+w2∗x2) ℎ = ቊ 0 ( ≤ 0) 1 ( > 0) パーセプトロンの式変形 h(x) h(x) x1 x2 w1 w2 1 y b
⚫さっき導出した活性化関数は閾値を境に出力が切り替わる関数: ステップ関数である。 ⚫パーセプトロンはステップ関数を使っている。 ⚫ステップ関数ℎ = ቊ 0 ( ≤ 0)
1 ( > 0) 活性化関数 h(x) ステップ関数
⚫ニューラルネットはパーセプトロンと違い活性化関数にシグモイド 関数などの関数を使っている。 ⚫シグモイド関数では、値を1,0の2値でなく、1から0の値を使ってい る ⚫シグモイド関数ℎ = 1 1+exp(−) 活性化関数 h(x)
シグモイド関数
⚫ニューラルネットではシグモイド関数のほかにReLU関数といった関 数を使用することがある。 ⚫ReLU関数は1から0の値に変換せず、0から入力xまでといった値を 使っている。 ⚫ReLU関数ℎ = ቊ ( ≥ 0)
0 ( < 0) 活性化関数 h(x) ReLU関数
⚫パーセプトロンは複数の入力を0,1の2値で返すことができる。 ⚫ニューラルネットはパーセプトロンと違って重みが自動的につくら れる。 ⚫出力を閾値よりも高いかどうかで見るパーセプトロンは活性化関 数としてステップ関数が使用されている。 ⚫出力が、入力が小さい場合0に近い値、入力が大きい場合1に近 い値を返す活性化関数がシグモイド関数である ⚫入力が0を超えていたらそのまま出力し、それ以外なら0にする活 性化関数がReLU関数である。 まとめ