Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介[Zero-Shot Dialog Generation with Cross-Dom...
Search
Ayumu
February 18, 2019
Technology
0
200
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 18, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
170
マルチモーダル学習
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
110
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
120
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
180
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
パーセプトロンとニューラルネット1
ayumum
0
110
Other Decks in Technology
See All in Technology
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
2
600
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
170
AWS Top Engineer、浮いてませんか? / As an AWS Top Engineer, Are You Out of Place?
yuj1osm
2
210
【Kaigi on Rails 事後勉強会LT】MeはどうしてGirlsに? 私とRubyを繋いだRail(s)
joyfrommasara
0
230
[Keynote] What do you need to know about DevEx in 2025
salaboy
0
160
Vibe Coding Year in Review. From Karpathy to Real-World Agents by Niels Rolland, CEO Paatch
vcoisne
0
120
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
100
ユーザーの声とAI検証で進める、プロダクトディスカバリー
sansantech
PRO
1
130
セキュアな認可付きリモートMCPサーバーをAWSマネージドサービスでつくろう! / Let's build an OAuth protected remote MCP server based on AWS managed services
kaminashi
3
290
三菱電機・ソニーグループ共同の「Agile Japan企業内サテライト」_2025
sony
0
140
SwiftUIのGeometryReaderとScrollViewを基礎から応用まで学び直す:設計と活用事例
fumiyasac0921
0
160
Large Vision Language Modelを用いた 文書画像データ化作業自動化の検証、運用 / shibuya_AI
sansan_randd
0
130
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Designing Experiences People Love
moore
142
24k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Speed Design
sergeychernyshev
32
1.2k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Making Projects Easy
brettharned
119
6.4k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
900
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
It's Worth the Effort
3n
187
28k
Unsuck your backbone
ammeep
671
58k
How STYLIGHT went responsive
nonsquared
100
5.8k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Transcript
Zero-Shot Dialog Generation with Cross-Domain Latent Action 2019/02/18 長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Literature ⚫“Zero-Shot Dialog Generation with Cross-Domain Latent Actions ⚫Tiancheng Zhao
and Maxine Eskenazi ⚫Proceedings of the SIGDIAL 2018 Conference, pages 1– 10,Melbourne, Australia, 12-14 July 2018.c©2018 Association for Computational Linguistics
Abstract ⚫E2E(End to End)のタスク型、非タスク型対話システムの強力なフ レームワークとしてダイアログ応答生成であるGEDM(Generatuce End- to-end Dialog Model)といったモデルがある。
Abstract ⚫GEDMの問題点として、大量の学習データを必要とする点がある ⚫GEDMをより柔軟にし、1つのモデルに対して同時に多くのドメイン の学習を行う(マルチタスク) ⚫データありの関連しているドメインから、データなしの新規のドメイ ンに情報を付与する(Zero-Shot)
Zero shot Dialog Generation(ZSDG)の設定 ⚫対話コンテキストc,応答x,ドメインdとし、データを{c,x,d}とする。 ⚫このZSDGモデルはc,dが与えられ、xを出力するように学習する。 ⚫このモデルのゴールとして未知のターゲットドメインをソースドメイ ンに関連付けし,c*d→xを学習する。
Seed Response (SR) ⚫SR(d)をタプルとして定義する。 ⚫各タプルはドメインに対して注釈がついている:{x,a,d} ⚫この時xは対話の例、aは注釈、dはドメインである
AM(Aciton Matching)アルゴリズム
ロス最適化 ⚫ZからXへのロス関数Ldd(ドメインを入力としたもの) ⚫対話のロス関数Ldialog
実験モデル詳細 ⚫認識用ネットワークR:双方向GRU ⚫エンコーダFe:階層型リカレントLSTMエンコーダ(HRE)[Li et al 2015] ⚫デコーダFd: ⚫LSTM 注釈デコーダ ⚫LSTM
PSM(Pointer-sentinel Mixture)デコーダ[Merity et al 2016]
LSTM PSMデコーダを使った実装
学習のデータセット ⚫CMU Sim Dial: Simulated dataset ⚫Stanford Multi-domain Dialog(SMD) Dataset:
Human-Woz dataset
実験結果
結果の測定と比較モデル ⚫BLEU-4:今回生成された応答~参照間のコーパスレベル ⚫Entity F1:生成された応答に正しいエンティティが付与されているか の確認 ⚫Act F1:生成された応答が正しい動作をするかどうか ⚫KB F1:生成されたAPIに正しいトークンが含まれているかの確認 ⚫BEAK:上記4つの相乗平均:BEAK=(bleu*ent*act*kb)^(1/4)
⚫BE(for SMD) BE=(bleu*ent)^(1/2)
結果からの分析
結果からの分析 SR
Conclusion ⚫対話生成システムに対する手法としてZSDGを提案した。 ⚫また、対話情報の共有がレベル的にパターンを持つといった仮定 の下、SRを持つAMアルゴリズムの提案を行った。 ⚫これらのアルゴリズムは、合成されたデータセットや実際のデータ セットの両方での有用性が確認された。