Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介[Zero-Shot Dialog Generation with Cross-Dom...
Search
Ayumu
February 18, 2019
Technology
0
190
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 18, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
170
マルチモーダル学習
ayumum
0
160
B3ゼミ 自然言語処理におけるCNN
ayumum
0
110
言語処理年次大会報告
ayumum
0
100
ニューラルネット4
ayumum
0
120
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
170
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
170
ニューラルネット実践
ayumum
0
120
パーセプトロンとニューラルネット1
ayumum
0
110
Other Decks in Technology
See All in Technology
つくって納得、つかって実感! 大規模言語モデルことはじめ
recruitengineers
PRO
25
6.6k
人と組織に偏重したEMへのアンチテーゼ──なぜ、EMに設計力が必要なのか/An antithesis to the overemphasis of people and organizations in EM
dskst
6
630
イオン店舗一覧ページのパフォーマンスチューニング事例 / Performance tuning example for AEON store list page
aeonpeople
2
310
人を動かすことについて考える
ichimichi
2
330
TypeScript入門
recruitengineers
PRO
24
7.6k
自社製CMSからmicroCMSへのリプレースがプロダクトグロースを加速させた話
nextbeatdev
0
150
[CV勉強会@関東 CVPR2025 読み会] MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos (Li+, CVPR2025)
abemii
0
200
LLMエージェント時代に適応した開発フロー
hiragram
1
420
Webアクセシビリティ入門
recruitengineers
PRO
2
410
新卒(ほぼ)専業Kagglerという選択肢
nocchi1
1
2.4k
Postman MCP 関連機能アップデート / Postman MCP feature updates
yokawasa
1
160
認知戦の理解と、市民としての対抗策
hogehuga
0
370
Featured
See All Featured
Done Done
chrislema
185
16k
Speed Design
sergeychernyshev
32
1.1k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
GitHub's CSS Performance
jonrohan
1031
460k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
900
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
780
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
Zero-Shot Dialog Generation with Cross-Domain Latent Action 2019/02/18 長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Literature ⚫“Zero-Shot Dialog Generation with Cross-Domain Latent Actions ⚫Tiancheng Zhao
and Maxine Eskenazi ⚫Proceedings of the SIGDIAL 2018 Conference, pages 1– 10,Melbourne, Australia, 12-14 July 2018.c©2018 Association for Computational Linguistics
Abstract ⚫E2E(End to End)のタスク型、非タスク型対話システムの強力なフ レームワークとしてダイアログ応答生成であるGEDM(Generatuce End- to-end Dialog Model)といったモデルがある。
Abstract ⚫GEDMの問題点として、大量の学習データを必要とする点がある ⚫GEDMをより柔軟にし、1つのモデルに対して同時に多くのドメイン の学習を行う(マルチタスク) ⚫データありの関連しているドメインから、データなしの新規のドメイ ンに情報を付与する(Zero-Shot)
Zero shot Dialog Generation(ZSDG)の設定 ⚫対話コンテキストc,応答x,ドメインdとし、データを{c,x,d}とする。 ⚫このZSDGモデルはc,dが与えられ、xを出力するように学習する。 ⚫このモデルのゴールとして未知のターゲットドメインをソースドメイ ンに関連付けし,c*d→xを学習する。
Seed Response (SR) ⚫SR(d)をタプルとして定義する。 ⚫各タプルはドメインに対して注釈がついている:{x,a,d} ⚫この時xは対話の例、aは注釈、dはドメインである
AM(Aciton Matching)アルゴリズム
ロス最適化 ⚫ZからXへのロス関数Ldd(ドメインを入力としたもの) ⚫対話のロス関数Ldialog
実験モデル詳細 ⚫認識用ネットワークR:双方向GRU ⚫エンコーダFe:階層型リカレントLSTMエンコーダ(HRE)[Li et al 2015] ⚫デコーダFd: ⚫LSTM 注釈デコーダ ⚫LSTM
PSM(Pointer-sentinel Mixture)デコーダ[Merity et al 2016]
LSTM PSMデコーダを使った実装
学習のデータセット ⚫CMU Sim Dial: Simulated dataset ⚫Stanford Multi-domain Dialog(SMD) Dataset:
Human-Woz dataset
実験結果
結果の測定と比較モデル ⚫BLEU-4:今回生成された応答~参照間のコーパスレベル ⚫Entity F1:生成された応答に正しいエンティティが付与されているか の確認 ⚫Act F1:生成された応答が正しい動作をするかどうか ⚫KB F1:生成されたAPIに正しいトークンが含まれているかの確認 ⚫BEAK:上記4つの相乗平均:BEAK=(bleu*ent*act*kb)^(1/4)
⚫BE(for SMD) BE=(bleu*ent)^(1/2)
結果からの分析
結果からの分析 SR
Conclusion ⚫対話生成システムに対する手法としてZSDGを提案した。 ⚫また、対話情報の共有がレベル的にパターンを持つといった仮定 の下、SRを持つAMアルゴリズムの提案を行った。 ⚫これらのアルゴリズムは、合成されたデータセットや実際のデータ セットの両方での有用性が確認された。