Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介[Zero-Shot Dialog Generation with Cross-Dom...
Search
Ayumu
February 18, 2019
Technology
0
210
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 18, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
マルチモーダル学習
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
ニューラルネット実践
ayumum
0
130
パーセプトロンとニューラルネット1
ayumum
0
120
Other Decks in Technology
See All in Technology
障害対応訓練、その前に
coconala_engineer
0
150
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
220
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
17
7.4k
LayerX QA Night#1
koyaman2
0
150
【ServiceNow SNUG Meetup LT deck】WorkFlow Editorの廃止と Flow Designerへの移行戦略
niwato
0
120
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
1.8k
日本Rubyの会: これまでとこれから
snoozer05
PRO
5
220
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
380
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
550
AI との良い付き合い方を僕らは誰も知らない
asei
0
210
高度サイバー人材育成専科(後半)
nomizone
0
410
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
440
Featured
See All Featured
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
23
The Mindset for Success: Future Career Progression
greggifford
PRO
0
180
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
240
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
38
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.7k
WENDY [Excerpt]
tessaabrams
8
35k
Done Done
chrislema
186
16k
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Prompt Engineering for Job Search
mfonobong
0
120
Transcript
Zero-Shot Dialog Generation with Cross-Domain Latent Action 2019/02/18 長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Literature ⚫“Zero-Shot Dialog Generation with Cross-Domain Latent Actions ⚫Tiancheng Zhao
and Maxine Eskenazi ⚫Proceedings of the SIGDIAL 2018 Conference, pages 1– 10,Melbourne, Australia, 12-14 July 2018.c©2018 Association for Computational Linguistics
Abstract ⚫E2E(End to End)のタスク型、非タスク型対話システムの強力なフ レームワークとしてダイアログ応答生成であるGEDM(Generatuce End- to-end Dialog Model)といったモデルがある。
Abstract ⚫GEDMの問題点として、大量の学習データを必要とする点がある ⚫GEDMをより柔軟にし、1つのモデルに対して同時に多くのドメイン の学習を行う(マルチタスク) ⚫データありの関連しているドメインから、データなしの新規のドメイ ンに情報を付与する(Zero-Shot)
Zero shot Dialog Generation(ZSDG)の設定 ⚫対話コンテキストc,応答x,ドメインdとし、データを{c,x,d}とする。 ⚫このZSDGモデルはc,dが与えられ、xを出力するように学習する。 ⚫このモデルのゴールとして未知のターゲットドメインをソースドメイ ンに関連付けし,c*d→xを学習する。
Seed Response (SR) ⚫SR(d)をタプルとして定義する。 ⚫各タプルはドメインに対して注釈がついている:{x,a,d} ⚫この時xは対話の例、aは注釈、dはドメインである
AM(Aciton Matching)アルゴリズム
ロス最適化 ⚫ZからXへのロス関数Ldd(ドメインを入力としたもの) ⚫対話のロス関数Ldialog
実験モデル詳細 ⚫認識用ネットワークR:双方向GRU ⚫エンコーダFe:階層型リカレントLSTMエンコーダ(HRE)[Li et al 2015] ⚫デコーダFd: ⚫LSTM 注釈デコーダ ⚫LSTM
PSM(Pointer-sentinel Mixture)デコーダ[Merity et al 2016]
LSTM PSMデコーダを使った実装
学習のデータセット ⚫CMU Sim Dial: Simulated dataset ⚫Stanford Multi-domain Dialog(SMD) Dataset:
Human-Woz dataset
実験結果
結果の測定と比較モデル ⚫BLEU-4:今回生成された応答~参照間のコーパスレベル ⚫Entity F1:生成された応答に正しいエンティティが付与されているか の確認 ⚫Act F1:生成された応答が正しい動作をするかどうか ⚫KB F1:生成されたAPIに正しいトークンが含まれているかの確認 ⚫BEAK:上記4つの相乗平均:BEAK=(bleu*ent*act*kb)^(1/4)
⚫BE(for SMD) BE=(bleu*ent)^(1/2)
結果からの分析
結果からの分析 SR
Conclusion ⚫対話生成システムに対する手法としてZSDGを提案した。 ⚫また、対話情報の共有がレベル的にパターンを持つといった仮定 の下、SRを持つAMアルゴリズムの提案を行った。 ⚫これらのアルゴリズムは、合成されたデータセットや実際のデータ セットの両方での有用性が確認された。