Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ニューラルネット実践
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Ayumu
February 21, 2019
Technology
0
140
ニューラルネット実践
ニューラルネット、損失関数、勾配法、前回の疑問点
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 21, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
190
マルチモーダル学習
ayumum
0
180
B3ゼミ 自然言語処理におけるCNN
ayumum
0
130
言語処理年次大会報告
ayumum
0
120
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
190
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
パーセプトロンとニューラルネット1
ayumum
0
120
Other Decks in Technology
See All in Technology
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
690
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
Greatest Disaster Hits in Web Performance
guaca
0
280
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
120
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
630
Tebiki Engineering Team Deck
tebiki
0
24k
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
120
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
A Tale of Four Properties
chriscoyier
162
24k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
1
1.9k
Evolving SEO for Evolving Search Engines
ryanjones
0
130
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
WCS-LA-2024
lcolladotor
0
450
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Unsuck your backbone
ammeep
671
58k
Abbi's Birthday
coloredviolet
1
4.8k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
320
Google's AI Overviews - The New Search
badams
0
910
Statistics for Hackers
jakevdp
799
230k
Transcript
ニューラルネット2 2019/02/21 長岡技術科学大学 自然言語処理研究室 学部3年 守谷 歩 ニューラルネット、損失関数、勾配法、前回の 疑問点
⚫入力層、中間層(隠れ層)、出力層に分けられたネットワーク ⚫重みをもつ層を数えることが多い(例:中間層が5個あったら6層 ネットワーク) 復習:ニューラルネットとは 入力層 中間層 出力層
⚫活性化関数h(x)を与える = ቊ 0 1 ∗ 1 + 2 ∗
2 + ≤ 0 1 1 ∗ 1 + 2 ∗ 2 + > 0 (w1,w2:重み x1,x2:入力 b:バイアス) = h(b+w1∗x1+w2∗x2) 復習:ニューラルネットの式 h(x) x1 x2 w1 w2 1 y b
⚫恒等関数とは入力されたものをそのまま 出力する関数 ⚫出力層に恒等関数を用いると入力信号 をそのまま出力する 恒等関数 a1 y δ()
⚫分類問題などではソフトマックス関数を用い る ⚫ソフトマックス関数: ∶ = exp σ =1 exp( )
⚫ソフトマックス関数の出力はすべての入力 信号から結びつきを持たせる。各ニューロン がすべての入力信号から影響を受ける形に なる。 ソフトマックス関数 a1 y1 δ() a2 y2 a3 y3
⚫ソフトマックス関数の出力は0から1の間 の実数になり、また、その総和は1となる。 これによって、確率として計算することが できる。 ⚫また、指数関数を考えると、ソフトマック ス関数に当てはめても、要素の大小関係 は変化しない。 ソフトマックス関数 特徴 a1
y1 δ() a2 y2 a3 y3
ソフトマックス関数 実装 結果 コード
⚫ニューラルネットの学習とは、訓練データから、重みを更新して、 最適な値にすることである。 ⚫重みを更新するために損失関数といった指標を使う。 ⚫損失関数が最小になるような重みを出すことによって、最適な重 みを求めることができる。 ニューラルネット 学習
⚫損失関数として、二乗和誤差といったものがある。 = 1 2 σ − 2 (y:ニューラルネットの出力,t:教師データ) ⚫教師データを正解のデータには1をそれ以外には0を出力する表 記法をone-hot表現という
y = [0.1,0.05,0.6,0.0,0.05,0.1,0.0,0.1,0.0,0.0] t = [0,0,1,0,0,0,0,0,0,0] One-hot表現と二乗和誤差
二乗和誤差 実装 結果 コード
⚫損失関数として、交差エントロピー誤差といったものがある。 = − σ log (y:ニューラルネットの出力,t:教師データ) ⚫さっき考えたone-hot表現で考える y = [0.1,0.05,0.6,0.0,0.05,0.1,0.0,0.1,0.0,0.0]
t = [0,0,1,0,0,0,0,0,0,0] ニューラルネットの出力が0.6の場合、交差エントロピー誤差は -log0.6=0.51となって、出力が正しく考えられる場合小さい値になる。 交差エントロピー誤差
交差エントロピー誤差 実装 結果 コード
⚫損失関数が最小になる値をとるパラメータを学習時に見つけるの は難しいため、勾配を用いてできるだけ小さな値を使う。 ⚫勾配法は、現在地から勾配の方向に進み続け、関数の値を徐々 に減らしていく方法。 = − η この時のηをニューラルネットの学習率という 勾配法
⚫ 0 , 1 = 0 2 + 1 2の最小値を勾配法で求める
勾配降下法(最小値を求める)実装 コード 結果
⚫ニューラルネットの勾配とは、重みパラメータに関する損失関数の 勾配である。とある重みWに対する損失関数Lがあった場合、その 勾配は とあらわすことができる。 ⚫重みのパラメータWの勾配dWが負の値であった場合、その値を 重みに更新してあげ、正の値であった場合、重みからその値を引け ば、損失関数を減らすことができる。 ニューラルネットの勾配
コード 勾配法を用いたニューラルネット実装 結果
宿題:活性化関数 線形関数であった 場合 ⚫活性化関数が線形関数であった場合 ℎ = これが3層のニューラルネットだった場合 ℎ ℎ ℎ
= 3 = 3 となるaが存在してしまう。⇒単層パーセプトロンと一緒
宿題:活性化関数 シグモイドであった 場合 ⚫シグモイド関数を微分する ⚫微分の最大値が0.25で、層を増やしていくと勾配が消失 する。
宿題:活性化関数 ReLUであった場合 ⚫微分されても活性化関数は ℎ′ = ቊ 1 ( > 0)
0 ( < 0) そのため、勾配消失が防げるため、ReLU関数が使われるこ とが多い