$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ニューラルネット実践
Search
Ayumu
February 21, 2019
Technology
0
130
ニューラルネット実践
ニューラルネット、損失関数、勾配法、前回の疑問点
長岡技術科学大学 自然言語処理研究室
学部3年 守谷 歩
Ayumu
February 21, 2019
Tweet
Share
More Decks by Ayumu
See All by Ayumu
B3ゼミ_03_28_マルチモーダル学習_.pdf
ayumum
0
180
マルチモーダル学習
ayumum
0
170
B3ゼミ 自然言語処理におけるCNN
ayumum
0
120
言語処理年次大会報告
ayumum
0
110
ニューラルネット4
ayumum
0
130
文献紹介「二値符号予測と誤り訂正を用いたニューラル翻訳モデル」
ayumum
0
190
ニューラルネット3 誤差伝搬法,CNN,word2vec
ayumum
0
180
文献紹介[Zero-Shot Dialog Generation with Cross-Domain Latent Action]
ayumum
0
210
パーセプトロンとニューラルネット1
ayumum
0
120
Other Decks in Technology
See All in Technology
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
580
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
540
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
120
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
1.8k
AWS Bedrock AgentCoreで作る 1on1支援AIエージェント 〜Memory × Evaluationsによる実践開発〜
yusukeshimizu
6
380
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
1
160
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
13
5.1k
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
240
Noを伝える技術2025: 爆速合意形成のためのNICOフレームワーク速習 #pmconf2025
aki_iinuma
2
2.1k
【pmconf2025】PdMの「責任感」がチームを弱くする?「分業型」から全員がユーザー価値に本気で向き合う「共創型開発チーム」への変遷
toshimasa012345
0
280
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
180
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
280
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
57k
Building Adaptive Systems
keathley
44
2.9k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Become a Pro
speakerdeck
PRO
31
5.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Producing Creativity
orderedlist
PRO
348
40k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Building Applications with DynamoDB
mza
96
6.8k
[SF Ruby Conf 2025] Rails X
palkan
0
500
Typedesign – Prime Four
hannesfritz
42
2.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Transcript
ニューラルネット2 2019/02/21 長岡技術科学大学 自然言語処理研究室 学部3年 守谷 歩 ニューラルネット、損失関数、勾配法、前回の 疑問点
⚫入力層、中間層(隠れ層)、出力層に分けられたネットワーク ⚫重みをもつ層を数えることが多い(例:中間層が5個あったら6層 ネットワーク) 復習:ニューラルネットとは 入力層 中間層 出力層
⚫活性化関数h(x)を与える = ቊ 0 1 ∗ 1 + 2 ∗
2 + ≤ 0 1 1 ∗ 1 + 2 ∗ 2 + > 0 (w1,w2:重み x1,x2:入力 b:バイアス) = h(b+w1∗x1+w2∗x2) 復習:ニューラルネットの式 h(x) x1 x2 w1 w2 1 y b
⚫恒等関数とは入力されたものをそのまま 出力する関数 ⚫出力層に恒等関数を用いると入力信号 をそのまま出力する 恒等関数 a1 y δ()
⚫分類問題などではソフトマックス関数を用い る ⚫ソフトマックス関数: ∶ = exp σ =1 exp( )
⚫ソフトマックス関数の出力はすべての入力 信号から結びつきを持たせる。各ニューロン がすべての入力信号から影響を受ける形に なる。 ソフトマックス関数 a1 y1 δ() a2 y2 a3 y3
⚫ソフトマックス関数の出力は0から1の間 の実数になり、また、その総和は1となる。 これによって、確率として計算することが できる。 ⚫また、指数関数を考えると、ソフトマック ス関数に当てはめても、要素の大小関係 は変化しない。 ソフトマックス関数 特徴 a1
y1 δ() a2 y2 a3 y3
ソフトマックス関数 実装 結果 コード
⚫ニューラルネットの学習とは、訓練データから、重みを更新して、 最適な値にすることである。 ⚫重みを更新するために損失関数といった指標を使う。 ⚫損失関数が最小になるような重みを出すことによって、最適な重 みを求めることができる。 ニューラルネット 学習
⚫損失関数として、二乗和誤差といったものがある。 = 1 2 σ − 2 (y:ニューラルネットの出力,t:教師データ) ⚫教師データを正解のデータには1をそれ以外には0を出力する表 記法をone-hot表現という
y = [0.1,0.05,0.6,0.0,0.05,0.1,0.0,0.1,0.0,0.0] t = [0,0,1,0,0,0,0,0,0,0] One-hot表現と二乗和誤差
二乗和誤差 実装 結果 コード
⚫損失関数として、交差エントロピー誤差といったものがある。 = − σ log (y:ニューラルネットの出力,t:教師データ) ⚫さっき考えたone-hot表現で考える y = [0.1,0.05,0.6,0.0,0.05,0.1,0.0,0.1,0.0,0.0]
t = [0,0,1,0,0,0,0,0,0,0] ニューラルネットの出力が0.6の場合、交差エントロピー誤差は -log0.6=0.51となって、出力が正しく考えられる場合小さい値になる。 交差エントロピー誤差
交差エントロピー誤差 実装 結果 コード
⚫損失関数が最小になる値をとるパラメータを学習時に見つけるの は難しいため、勾配を用いてできるだけ小さな値を使う。 ⚫勾配法は、現在地から勾配の方向に進み続け、関数の値を徐々 に減らしていく方法。 = − η この時のηをニューラルネットの学習率という 勾配法
⚫ 0 , 1 = 0 2 + 1 2の最小値を勾配法で求める
勾配降下法(最小値を求める)実装 コード 結果
⚫ニューラルネットの勾配とは、重みパラメータに関する損失関数の 勾配である。とある重みWに対する損失関数Lがあった場合、その 勾配は とあらわすことができる。 ⚫重みのパラメータWの勾配dWが負の値であった場合、その値を 重みに更新してあげ、正の値であった場合、重みからその値を引け ば、損失関数を減らすことができる。 ニューラルネットの勾配
コード 勾配法を用いたニューラルネット実装 結果
宿題:活性化関数 線形関数であった 場合 ⚫活性化関数が線形関数であった場合 ℎ = これが3層のニューラルネットだった場合 ℎ ℎ ℎ
= 3 = 3 となるaが存在してしまう。⇒単層パーセプトロンと一緒
宿題:活性化関数 シグモイドであった 場合 ⚫シグモイド関数を微分する ⚫微分の最大値が0.25で、層を増やしていくと勾配が消失 する。
宿題:活性化関数 ReLUであった場合 ⚫微分されても活性化関数は ℎ′ = ቊ 1 ( > 0)
0 ( < 0) そのため、勾配消失が防げるため、ReLU関数が使われるこ とが多い