Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2D 绘图中的坐标系统和坐标变换
Search
Baidu FEX Team
May 07, 2014
Technology
4
990
2D 绘图中的坐标系统和坐标变换
本文介绍在 2D 绘图技术中的坐标系统和坐标变换的相关知识。同时介绍 Kity 在这方面提供的 API 。希望这些知识对于需要进行图形应用开发的同学会有所帮助。
Baidu FEX Team
May 07, 2014
Tweet
Share
More Decks by Baidu FEX Team
See All by Baidu FEX Team
HTML5富交互与社交传播
baidufe
1
840
F.I.S——提升产品性能与开发效率的前端解决方案
baidufe
1
660
跨端组件实践
baidufe
7
770
如何成为一名优秀的前端工程师
baidufe
19
2.4k
静态资源自动合并系统
baidufe
12
2.2k
基于HTML5技术的文件上传
baidufe
4
2.2k
百度前端基础数据平台介绍
baidufe
17
3.2k
Web富应⽤用的设计与开发
baidufe
4
770
如何做导师
baidufe
9
800
Other Decks in Technology
See All in Technology
Datadog のトライアルを成功に導く技術 / Techniques for a successful Datadog trial
nulabinc
PRO
0
180
Google Cloud Next 2025 Recap アプリケーション開発を加速する機能アップデート / Application development-related features of Google Cloud
ryokotmng
0
290
地に足の付いた現実的な技術選定から魔力のある体験を得る『AIレシート読み取り機能』のケーススタディ / From Grounded Tech Choices to Magical UX: A Case Study of AI Receipt Scanning
moznion
5
1.8k
encoding/json v2を予習しよう!
yuyu_hf
PRO
1
200
[新卒向け研修資料] テスト文字列に「うんこ」と入れるな(2025年版)
infiniteloop_inc
13
43k
インフラからSREへ
mirakui
19
7k
AWSを利用する上で知っておきたい名前解決の話
nagisa53
6
840
Tailwind CSS の小話「コンテナークエリーって便利」
yamaday
0
130
"発信文化"をどうやって計測する?技術広報のKPI探索記/How do we measure communication culture?
bitkey
4
330
さくらのクラウド開発の裏側
metakoma
PRO
18
5.5k
人間性を捧げる生成AI時代の技術選定
yo4raw
1
780
MagicPod MCPサーバー開発の裏側とAIエージェント活用の展望
magicpod
0
250
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
RailsConf 2023
tenderlove
30
1.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
How GitHub (no longer) Works
holman
314
140k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
620
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Transcript
坐标系统与坐标变换 FEX 刘家鸣
坐标系统概述 • 原点 • 互相垂直的两条数轴 • ⾓角度定义
数学上 X(0°) Y(90°) 45° 坐标系统概述
屏幕上 X(0°) Y(90°) 45° 坐标系统概述
视野与世界 • 世界是⽆无穷⼤大的 • 视野是观察世界的⼀一个矩形区域 • 坐标系在世界中
世界 视野
锤⼦子的故事
从前有⼀一个画家
他很擅⻓长画锤⼦子
有⼀一天他改⾏行当程序员
⽼老板说 “你用程序画一个锤子吧”
太简单了 x1 y1 h1 x2 y2 h2 w1 w2 X
Y
⽼老板⼜又说 “锤子往右挪100像素吧”
没问题 x1 y1 h1 x2 y2 h2 w1 w2 X
Y
没问题 x1 + 100 y1 h1 x2 + 100 y2
h2 w1 w2 X Y
? ? ?
⾃自⾝身坐标系和参考坐标系 • 为图形复合⽽而⽣生的机制 • 只在⾼高层绘图技术中⽀支持(如SVG、VML) • 定义 • 区别
定义 OC OB OA var a = new Rect(100, 50,
0, 0); var b = new Rect(20, 120, 40, 50); var c = new Group().addShapes([a, b]); ⾃自⾝身坐标系和参考坐标系
区别 OC OB OA ⾃自⾝身坐标系和参考坐标系 1. 产⽣生的场景不同 ⾃自⾝身坐标系:与⽣生俱来 参考坐标系:在从属关系中 2.
数量不同 ⾃自⾝身坐标系:有且仅有 1 个 参考坐标系:可以有 n 个 3. 使⽤用的⺫⽬目的不同 ⾃自⾝身坐标系:为了定义图形 参考坐标系:为了观察图形 Live Example
坐标变换 • 定义 • 线性变换 • 线性变换列表 • 前驱坐标系与图形的变换矩阵
定义 • 数学上,「坐标变换」 是采⽤用⼀一定的数学⽅方法 将⼀一个坐标系的坐标变 换为另⼀一个坐标系的坐 标的过程。 • 2D 绘图中,「坐标变
换」是对⼀一个坐标系到 另⼀一个坐标系的变换的 描述 坐标变换 OC OB OA
线性变换 坐标变换 • 线性变换公式 X’ = aX + cY +
e Y’ = bX + dY + f • 变换矩阵,记为 M a c e b d f 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
线性变换 • 线性变换公式 X’ = aX + cY + e
Y’ = bX + dY + f • 变换矩阵,记为 M OA OB 坐标变换 1 0 10 0 1 10 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ a c e b d f 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
平移 OA OB 线性变换 1 0 10 0 1 10
0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
旋转 OA 线性变换 • 使⽤用极坐标求变换矩阵 OB X = r ⋅cos(α)
Y = r isin(α) ⎧ ⎨ ⎩ 极坐标⽅方程: 旋转 θ 度后: X ' = r ⋅cos(α +θ) Y ' = r isin(α +θ) ⎧ ⎨ ⎩ 展开: X ' = r ⋅cos α ( )cos θ ( )− r ⋅sin α ( )sin θ ( )= cos θ ( )X − sin θ ( )Y + 0 Y ' = r ⋅cos α ( )sin θ ( )+ r ⋅sin α ( )cos θ ( )= sin θ ( )X + cos θ ( )Y + 0 ⎧ ⎨ ⎪ ⎩ ⎪
旋转 OA 线性变换 O B • 使⽤用极坐标求变换矩阵 cos(30°) −sin(30°) 0
sin(30°) cos(30°) 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ X = r ⋅cos(α) Y = r isin(α) ⎧ ⎨ ⎩ 极坐标⽅方程: 旋转 θ 度后: X ' = r ⋅cos(α +θ) Y ' = r isin(α +θ) ⎧ ⎨ ⎩ 展开: X ' = r ⋅cos α ( )cos θ ( )− r ⋅sin α ( )sin θ ( )= cos θ ( )X − sin θ ( )Y + 0 Y ' = r ⋅cos α ( )sin θ ( )+ r ⋅sin α ( )cos θ ( )= sin θ ( )X + cos θ ( )Y + 0 ⎧ ⎨ ⎪ ⎩ ⎪
缩放 OA 线性变换 • a 和 c 直观控制缩放 OB
缩放 OA 线性变换 • a 和 c 直观控制缩放 OB 2
0 0 0 2 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
变换列表 OA 线性变换 • 表⽰示⼀一系列的变换,结 果为变换的矩阵的乘积 M = Mn ·
Mn-1 · ... · M2 · M1 · M0 • 后⾯面的变换乘在前⾯面 1 0 10 0 1 10 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ i cos(30°) −sin(30°) 0 sin(30°) cos(30°) 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ Mtranslate · Mrotate O B
变换列表 OA 线性变换 • 表⽰示⼀一系列的变换,结 果为变换的矩阵的乘积 O B M =
Mn · Mn-1 · ... · M2 · M1 · M0 • 后⾯面的变换乘在前⾯面 O C Mtranslate · Mrotate Mrotate · Mtranslate • 顺序影响结果
前驱坐标系和图形的变换矩阵 线性变换 • 前驱坐标系:⽗父容器的坐标系 • 图形的变换矩阵M:⾃自⾝身坐标系到前驱坐标系的变换 • 变换的效果会叠加
前驱坐标系和图形的变换矩阵 线性变换 OB OA
前驱坐标系和图形的变换矩阵 线性变换 OB OA MA 1. 设置A的变换矩阵MA
OC 前驱坐标系和图形的变换矩阵 线性变换 OB OA MA 1. 设置A的变换矩阵MA 2. 把B放置在C中
前驱坐标系和图形的变换矩阵 线性变换 1. 设置A的变换矩阵MA 2. 把B放置在C中 3. 设置B的变换矩阵MB OC O
B O A M A MB 此时,OA 到OC 的变换为: MB·MA
Q&A