Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2D 绘图中的坐标系统和坐标变换
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Baidu FEX Team
May 07, 2014
Technology
4
1k
2D 绘图中的坐标系统和坐标变换
本文介绍在 2D 绘图技术中的坐标系统和坐标变换的相关知识。同时介绍 Kity 在这方面提供的 API 。希望这些知识对于需要进行图形应用开发的同学会有所帮助。
Baidu FEX Team
May 07, 2014
Tweet
Share
More Decks by Baidu FEX Team
See All by Baidu FEX Team
HTML5富交互与社交传播
baidufe
1
900
F.I.S——提升产品性能与开发效率的前端解决方案
baidufe
1
720
跨端组件实践
baidufe
7
800
如何成为一名优秀的前端工程师
baidufe
19
2.5k
静态资源自动合并系统
baidufe
12
2.3k
基于HTML5技术的文件上传
baidufe
4
2.3k
百度前端基础数据平台介绍
baidufe
17
3.3k
Web富应⽤用的设计与开发
baidufe
4
820
如何做导师
baidufe
9
850
Other Decks in Technology
See All in Technology
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
550
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
73k
2026年はチャンキングを極める!
shibuiwilliam
9
1.9k
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
1.9k
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
410
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
160
MySQLのJSON機能の活用術
ikomachi226
0
140
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
1
180
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
2
1.9k
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
280
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
640
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Featured
See All Featured
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Rails Girls Zürich Keynote
gr2m
96
14k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
95
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Speed Design
sergeychernyshev
33
1.5k
Statistics for Hackers
jakevdp
799
230k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Transcript
坐标系统与坐标变换 FEX 刘家鸣
坐标系统概述 • 原点 • 互相垂直的两条数轴 • ⾓角度定义
数学上 X(0°) Y(90°) 45° 坐标系统概述
屏幕上 X(0°) Y(90°) 45° 坐标系统概述
视野与世界 • 世界是⽆无穷⼤大的 • 视野是观察世界的⼀一个矩形区域 • 坐标系在世界中
世界 视野
锤⼦子的故事
从前有⼀一个画家
他很擅⻓长画锤⼦子
有⼀一天他改⾏行当程序员
⽼老板说 “你用程序画一个锤子吧”
太简单了 x1 y1 h1 x2 y2 h2 w1 w2 X
Y
⽼老板⼜又说 “锤子往右挪100像素吧”
没问题 x1 y1 h1 x2 y2 h2 w1 w2 X
Y
没问题 x1 + 100 y1 h1 x2 + 100 y2
h2 w1 w2 X Y
? ? ?
⾃自⾝身坐标系和参考坐标系 • 为图形复合⽽而⽣生的机制 • 只在⾼高层绘图技术中⽀支持(如SVG、VML) • 定义 • 区别
定义 OC OB OA var a = new Rect(100, 50,
0, 0); var b = new Rect(20, 120, 40, 50); var c = new Group().addShapes([a, b]); ⾃自⾝身坐标系和参考坐标系
区别 OC OB OA ⾃自⾝身坐标系和参考坐标系 1. 产⽣生的场景不同 ⾃自⾝身坐标系:与⽣生俱来 参考坐标系:在从属关系中 2.
数量不同 ⾃自⾝身坐标系:有且仅有 1 个 参考坐标系:可以有 n 个 3. 使⽤用的⺫⽬目的不同 ⾃自⾝身坐标系:为了定义图形 参考坐标系:为了观察图形 Live Example
坐标变换 • 定义 • 线性变换 • 线性变换列表 • 前驱坐标系与图形的变换矩阵
定义 • 数学上,「坐标变换」 是采⽤用⼀一定的数学⽅方法 将⼀一个坐标系的坐标变 换为另⼀一个坐标系的坐 标的过程。 • 2D 绘图中,「坐标变
换」是对⼀一个坐标系到 另⼀一个坐标系的变换的 描述 坐标变换 OC OB OA
线性变换 坐标变换 • 线性变换公式 X’ = aX + cY +
e Y’ = bX + dY + f • 变换矩阵,记为 M a c e b d f 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
线性变换 • 线性变换公式 X’ = aX + cY + e
Y’ = bX + dY + f • 变换矩阵,记为 M OA OB 坐标变换 1 0 10 0 1 10 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ a c e b d f 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
平移 OA OB 线性变换 1 0 10 0 1 10
0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
旋转 OA 线性变换 • 使⽤用极坐标求变换矩阵 OB X = r ⋅cos(α)
Y = r isin(α) ⎧ ⎨ ⎩ 极坐标⽅方程: 旋转 θ 度后: X ' = r ⋅cos(α +θ) Y ' = r isin(α +θ) ⎧ ⎨ ⎩ 展开: X ' = r ⋅cos α ( )cos θ ( )− r ⋅sin α ( )sin θ ( )= cos θ ( )X − sin θ ( )Y + 0 Y ' = r ⋅cos α ( )sin θ ( )+ r ⋅sin α ( )cos θ ( )= sin θ ( )X + cos θ ( )Y + 0 ⎧ ⎨ ⎪ ⎩ ⎪
旋转 OA 线性变换 O B • 使⽤用极坐标求变换矩阵 cos(30°) −sin(30°) 0
sin(30°) cos(30°) 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ X = r ⋅cos(α) Y = r isin(α) ⎧ ⎨ ⎩ 极坐标⽅方程: 旋转 θ 度后: X ' = r ⋅cos(α +θ) Y ' = r isin(α +θ) ⎧ ⎨ ⎩ 展开: X ' = r ⋅cos α ( )cos θ ( )− r ⋅sin α ( )sin θ ( )= cos θ ( )X − sin θ ( )Y + 0 Y ' = r ⋅cos α ( )sin θ ( )+ r ⋅sin α ( )cos θ ( )= sin θ ( )X + cos θ ( )Y + 0 ⎧ ⎨ ⎪ ⎩ ⎪
缩放 OA 线性变换 • a 和 c 直观控制缩放 OB
缩放 OA 线性变换 • a 和 c 直观控制缩放 OB 2
0 0 0 2 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
变换列表 OA 线性变换 • 表⽰示⼀一系列的变换,结 果为变换的矩阵的乘积 M = Mn ·
Mn-1 · ... · M2 · M1 · M0 • 后⾯面的变换乘在前⾯面 1 0 10 0 1 10 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ i cos(30°) −sin(30°) 0 sin(30°) cos(30°) 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ Mtranslate · Mrotate O B
变换列表 OA 线性变换 • 表⽰示⼀一系列的变换,结 果为变换的矩阵的乘积 O B M =
Mn · Mn-1 · ... · M2 · M1 · M0 • 后⾯面的变换乘在前⾯面 O C Mtranslate · Mrotate Mrotate · Mtranslate • 顺序影响结果
前驱坐标系和图形的变换矩阵 线性变换 • 前驱坐标系:⽗父容器的坐标系 • 图形的变换矩阵M:⾃自⾝身坐标系到前驱坐标系的变换 • 变换的效果会叠加
前驱坐标系和图形的变换矩阵 线性变换 OB OA
前驱坐标系和图形的变换矩阵 线性变换 OB OA MA 1. 设置A的变换矩阵MA
OC 前驱坐标系和图形的变换矩阵 线性变换 OB OA MA 1. 设置A的变换矩阵MA 2. 把B放置在C中
前驱坐标系和图形的变换矩阵 线性变换 1. 设置A的变换矩阵MA 2. 把B放置在C中 3. 设置B的变换矩阵MB OC O
B O A M A MB 此时,OA 到OC 的变换为: MB·MA
Q&A