Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mateusz Herych - LIKE '%smth%' is not the way
Search
Base Lab
February 12, 2014
Programming
0
140
Mateusz Herych - LIKE '%smth%' is not the way
Droidcon IT, Turin Feb 2014
Base Lab
February 12, 2014
Tweet
Share
More Decks by Base Lab
See All by Base Lab
Szymon Sobczak - Hadoop + Storm
baselab
0
100
Slawek Skowron - Monitoring @ Scale
baselab
0
120
Karol Nowak - Monitoring clock drift in Amazon EC2 environment
baselab
0
110
Tomasz Nowak - Web Application Testing made easy
baselab
0
290
Szymon Pawlik - UX i Automatyzacja czyli jak testerzy mogą poprawić produkt.
baselab
0
240
Jerzy Chałupski - Offline mode in Android apps
baselab
3
470
Jerzy Chałupski - Data model on Android
baselab
4
220
Other Decks in Programming
See All in Programming
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
2
21k
The Niche of CDK Grant オブジェクトって何者?/the-niche-of-cdk-what-isgrant-object
hassaku63
1
620
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
1
470
GPUを計算資源として使おう!
primenumber
1
250
Vibe Codingの幻想を超えて-生成AIを現場で使えるようにするまでの泥臭い話.ai
fumiyakume
10
4.6k
코딩 에이전트 체크리스트: Claude Code ver.
nacyot
0
930
生成AI時代のコンポーネントライブラリの作り方
touyou
1
290
状態遷移図を書こう / Sequence Chart vs State Diagram
orgachem
PRO
2
210
AIと”コードの評価関数”を共有する / Share the "code evaluation function" with AI
euglena1215
1
180
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
5
1.1k
PipeCDのプラグイン化で目指すところ
warashi
1
310
MCPを使ってイベントソーシングのAIコーディングを効率化する / Streamlining Event Sourcing AI Coding with MCP
tomohisa
0
170
Featured
See All Featured
Building Applications with DynamoDB
mza
95
6.5k
Designing for humans not robots
tammielis
253
25k
The Language of Interfaces
destraynor
158
25k
Raft: Consensus for Rubyists
vanstee
140
7k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
830
GitHub's CSS Performance
jonrohan
1031
460k
The Pragmatic Product Professional
lauravandoore
35
6.7k
What's in a price? How to price your products and services
michaelherold
246
12k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
700
Transcript
None
Mateusz Herych Android Developer - Base CRM Co-organizer - GDG
Krakow Co-organizer - KrakDroid
Stats
LIKE ‘%smth%’
LIKE ‘%smth%’ is not the way.
Search
Search Offline.
Why?
Why? Let the backend guys do the job
Why? Internet is not everywhere.
Why? Internet is not everywhere. It takes time. (especially SSL)
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Sure, some apps don’ t really need it You need
an Internet to order that taxi anyway
Do you keep offline content? Let your users navigate fast.
Did I say fast?
How? Let’s go deeper.
Context
CRM - Contacts - Deals - Notes - ...
CRM - Contacts (~100) - Deals (~50) - Notes (~100)
- ... 2009
select id from deals where name LIKE ‘% something%’
CRM - Contacts (~40K) - Deals (~20K) - Notes (~300K)
- ...
None
HOW DOES “LIKE” WORKS LIKE?
Docs saying
I tried to put all the conditions that need to
be satisfied so SQLite can use indices combined with LIKE operator. Docs saying
They didn’t fit. Docs saying
http://www.sqlite. org/optoverview.html Docs saying
Hey, you, SQLite! EXPLAIN (my) QUERY PLAN
PRAGMA case_sensitive_like=1;
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name);
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name); SELECT id FROM
deals WHERE name LIKE ‘Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘Some%’; SEARCH TABLE deals USING COVERING INDEX search_index (name>? AND name<?) (~31250 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows) (And then you die)
first_name || ‘ ‘ || last_name? UNIONs, complicated VIEWs? Like
is NOT the way to go.
What people think SQLite is
What SQLite really is
SQLite is powerful Not kidding.
FTS3 Full Text Search
CREATE VIRTUAL TABLE search USING fts3 (tokens)
? CREATE VIRTUAL TABLE search USING fts3 (tokens INT)
Nope. PRAGMA table_info(search); cid|name|type|notnull|dflt_value|pk 0|word||0||0
All is TEXT, except for hidden rowid.
What is virtual table? Imagine it’s a Java interface. interface
VirtualTable { void insert(Params p); void update(Params p); // etc, also createTable. }
What is a virtual table? class Fts3 implements VirtualTable {
// … }
None
MATCH Let’s go make some magic.
SELECT * FROM search WHERE content MATCH ‘something’
SELECT rowid, * FROM search WHERE content MATCH ‘something’ rowid|word
1|something 2|not something special 3|SoMeThInG
SELECT rowid, * FROM search WHERE content MATCH ‘some* spe*’
rowid|word 2|not something special
CREATE VIRTUAL TABLE search USING fts3 (author, lyrics)
SELECT * FROM search WHERE lyrics MATCH ‘author:Giorgio Synthesizer author
|lyrics Giorgio Moroder|..Why don’t I use a synthesizer...
Cool?
Cool? Look at this.
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR/3 synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
Tips.
1. Your FTS vtable should contain only tokens. Eventually divided
into sections.
2. Link your FTS table’s records with other table (containing
real object’s id and type) using rowid.
3. Remember. FTS is fast enough for searching purposes. But
it’s always slower than ‘=’ based query on indexed field.
4. EXPLAIN QUERY PLAN doesn’t work for fts tables. Try
to measure it with .timer ON.
5. ???
6. QUESTIONS TIME!