Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mateusz Herych - LIKE '%smth%' is not the way
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Base Lab
February 12, 2014
Programming
0
150
Mateusz Herych - LIKE '%smth%' is not the way
Droidcon IT, Turin Feb 2014
Base Lab
February 12, 2014
Tweet
Share
More Decks by Base Lab
See All by Base Lab
Szymon Sobczak - Hadoop + Storm
baselab
0
100
Slawek Skowron - Monitoring @ Scale
baselab
0
130
Karol Nowak - Monitoring clock drift in Amazon EC2 environment
baselab
0
120
Tomasz Nowak - Web Application Testing made easy
baselab
0
300
Szymon Pawlik - UX i Automatyzacja czyli jak testerzy mogą poprawić produkt.
baselab
0
250
Jerzy Chałupski - Offline mode in Android apps
baselab
3
490
Jerzy Chałupski - Data model on Android
baselab
4
240
Other Decks in Programming
See All in Programming
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
800
2026年 エンジニアリング自己学習法
yumechi
0
140
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
今から始めるClaude Code超入門
448jp
8
9.1k
Data-Centric Kaggle
isax1015
2
780
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
140
Fluid Templating in TYPO3 14
s2b
0
130
MUSUBIXとは
nahisaho
0
140
AgentCoreとHuman in the Loop
har1101
5
250
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
260
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
440
Featured
See All Featured
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
72
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Why Our Code Smells
bkeepers
PRO
340
58k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Facilitating Awesome Meetings
lara
57
6.8k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
57
エンジニアに許された特別な時間の終わり
watany
106
230k
Transcript
None
Mateusz Herych Android Developer - Base CRM Co-organizer - GDG
Krakow Co-organizer - KrakDroid
Stats
LIKE ‘%smth%’
LIKE ‘%smth%’ is not the way.
Search
Search Offline.
Why?
Why? Let the backend guys do the job
Why? Internet is not everywhere.
Why? Internet is not everywhere. It takes time. (especially SSL)
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Sure, some apps don’ t really need it You need
an Internet to order that taxi anyway
Do you keep offline content? Let your users navigate fast.
Did I say fast?
How? Let’s go deeper.
Context
CRM - Contacts - Deals - Notes - ...
CRM - Contacts (~100) - Deals (~50) - Notes (~100)
- ... 2009
select id from deals where name LIKE ‘% something%’
CRM - Contacts (~40K) - Deals (~20K) - Notes (~300K)
- ...
None
HOW DOES “LIKE” WORKS LIKE?
Docs saying
I tried to put all the conditions that need to
be satisfied so SQLite can use indices combined with LIKE operator. Docs saying
They didn’t fit. Docs saying
http://www.sqlite. org/optoverview.html Docs saying
Hey, you, SQLite! EXPLAIN (my) QUERY PLAN
PRAGMA case_sensitive_like=1;
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name);
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name); SELECT id FROM
deals WHERE name LIKE ‘Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘Some%’; SEARCH TABLE deals USING COVERING INDEX search_index (name>? AND name<?) (~31250 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows) (And then you die)
first_name || ‘ ‘ || last_name? UNIONs, complicated VIEWs? Like
is NOT the way to go.
What people think SQLite is
What SQLite really is
SQLite is powerful Not kidding.
FTS3 Full Text Search
CREATE VIRTUAL TABLE search USING fts3 (tokens)
? CREATE VIRTUAL TABLE search USING fts3 (tokens INT)
Nope. PRAGMA table_info(search); cid|name|type|notnull|dflt_value|pk 0|word||0||0
All is TEXT, except for hidden rowid.
What is virtual table? Imagine it’s a Java interface. interface
VirtualTable { void insert(Params p); void update(Params p); // etc, also createTable. }
What is a virtual table? class Fts3 implements VirtualTable {
// … }
None
MATCH Let’s go make some magic.
SELECT * FROM search WHERE content MATCH ‘something’
SELECT rowid, * FROM search WHERE content MATCH ‘something’ rowid|word
1|something 2|not something special 3|SoMeThInG
SELECT rowid, * FROM search WHERE content MATCH ‘some* spe*’
rowid|word 2|not something special
CREATE VIRTUAL TABLE search USING fts3 (author, lyrics)
SELECT * FROM search WHERE lyrics MATCH ‘author:Giorgio Synthesizer author
|lyrics Giorgio Moroder|..Why don’t I use a synthesizer...
Cool?
Cool? Look at this.
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR/3 synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
Tips.
1. Your FTS vtable should contain only tokens. Eventually divided
into sections.
2. Link your FTS table’s records with other table (containing
real object’s id and type) using rowid.
3. Remember. FTS is fast enough for searching purposes. But
it’s always slower than ‘=’ based query on indexed field.
4. EXPLAIN QUERY PLAN doesn’t work for fts tables. Try
to measure it with .timer ON.
5. ???
6. QUESTIONS TIME!