Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mateusz Herych - LIKE '%smth%' is not the way
Search
Base Lab
February 12, 2014
Programming
0
150
Mateusz Herych - LIKE '%smth%' is not the way
Droidcon IT, Turin Feb 2014
Base Lab
February 12, 2014
Tweet
Share
More Decks by Base Lab
See All by Base Lab
Szymon Sobczak - Hadoop + Storm
baselab
0
100
Slawek Skowron - Monitoring @ Scale
baselab
0
130
Karol Nowak - Monitoring clock drift in Amazon EC2 environment
baselab
0
120
Tomasz Nowak - Web Application Testing made easy
baselab
0
300
Szymon Pawlik - UX i Automatyzacja czyli jak testerzy mogą poprawić produkt.
baselab
0
250
Jerzy Chałupski - Offline mode in Android apps
baselab
3
490
Jerzy Chałupski - Data model on Android
baselab
4
240
Other Decks in Programming
See All in Programming
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
高速開発のためのコード整理術
sutetotanuki
1
410
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.4k
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
210
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
750
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
dchart: charts from deck markup
ajstarks
3
1k
CSC307 Lecture 03
javiergs
PRO
1
490
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
620
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
MUSUBIXとは
nahisaho
0
140
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Music & Morning Musume
bryan
47
7.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
First, design no harm
axbom
PRO
2
1.1k
[SF Ruby Conf 2025] Rails X
palkan
1
760
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
None
Mateusz Herych Android Developer - Base CRM Co-organizer - GDG
Krakow Co-organizer - KrakDroid
Stats
LIKE ‘%smth%’
LIKE ‘%smth%’ is not the way.
Search
Search Offline.
Why?
Why? Let the backend guys do the job
Why? Internet is not everywhere.
Why? Internet is not everywhere. It takes time. (especially SSL)
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Sure, some apps don’ t really need it You need
an Internet to order that taxi anyway
Do you keep offline content? Let your users navigate fast.
Did I say fast?
How? Let’s go deeper.
Context
CRM - Contacts - Deals - Notes - ...
CRM - Contacts (~100) - Deals (~50) - Notes (~100)
- ... 2009
select id from deals where name LIKE ‘% something%’
CRM - Contacts (~40K) - Deals (~20K) - Notes (~300K)
- ...
None
HOW DOES “LIKE” WORKS LIKE?
Docs saying
I tried to put all the conditions that need to
be satisfied so SQLite can use indices combined with LIKE operator. Docs saying
They didn’t fit. Docs saying
http://www.sqlite. org/optoverview.html Docs saying
Hey, you, SQLite! EXPLAIN (my) QUERY PLAN
PRAGMA case_sensitive_like=1;
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name);
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name); SELECT id FROM
deals WHERE name LIKE ‘Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘Some%’; SEARCH TABLE deals USING COVERING INDEX search_index (name>? AND name<?) (~31250 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows) (And then you die)
first_name || ‘ ‘ || last_name? UNIONs, complicated VIEWs? Like
is NOT the way to go.
What people think SQLite is
What SQLite really is
SQLite is powerful Not kidding.
FTS3 Full Text Search
CREATE VIRTUAL TABLE search USING fts3 (tokens)
? CREATE VIRTUAL TABLE search USING fts3 (tokens INT)
Nope. PRAGMA table_info(search); cid|name|type|notnull|dflt_value|pk 0|word||0||0
All is TEXT, except for hidden rowid.
What is virtual table? Imagine it’s a Java interface. interface
VirtualTable { void insert(Params p); void update(Params p); // etc, also createTable. }
What is a virtual table? class Fts3 implements VirtualTable {
// … }
None
MATCH Let’s go make some magic.
SELECT * FROM search WHERE content MATCH ‘something’
SELECT rowid, * FROM search WHERE content MATCH ‘something’ rowid|word
1|something 2|not something special 3|SoMeThInG
SELECT rowid, * FROM search WHERE content MATCH ‘some* spe*’
rowid|word 2|not something special
CREATE VIRTUAL TABLE search USING fts3 (author, lyrics)
SELECT * FROM search WHERE lyrics MATCH ‘author:Giorgio Synthesizer author
|lyrics Giorgio Moroder|..Why don’t I use a synthesizer...
Cool?
Cool? Look at this.
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR/3 synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
Tips.
1. Your FTS vtable should contain only tokens. Eventually divided
into sections.
2. Link your FTS table’s records with other table (containing
real object’s id and type) using rowid.
3. Remember. FTS is fast enough for searching purposes. But
it’s always slower than ‘=’ based query on indexed field.
4. EXPLAIN QUERY PLAN doesn’t work for fts tables. Try
to measure it with .timer ON.
5. ???
6. QUESTIONS TIME!