Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Bootiful multi-model applications with Redis Stack

Bootiful multi-model applications with Redis Stack

Redis Stack provides a seamless and straightforward way to use different data models and functionality from Redis, including a document store, a graph database, a time series data database, probabilistic data structures, and a full-text search engine. In this session, I will walk you thru the building of a Spring Boot application that uses a hybrid model with Redis OM Spring. Redis OM Spring provides a robust repository and custom object-mapping abstractions built on the powerful Spring Data Redis (SDR) framework to tap into all the modules of Redis Stack.

Brian Sam-Bodden

May 28, 2022
Tweet

Other Decks in Programming

Transcript

  1. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  2. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  3. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  4. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  5. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  6. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  7. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  8. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  9. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  10. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  11. Lists [ A → B → C → D →

    E ] Hashes { A: “foo”, B: “bar”, C: “baz” } Bitmaps 0011010101100111001010 Strings "I'm a Plain Text String!” Bit field {23334}{112345569}{766538} 🗝 KEY Streams →{id1=time1.seq1(A:“xyz”, B:“cdf”), d2=time2.seq2(D:“abc”, )}→ Hyperloglog 00110101 11001110 Sorted Sets { A: 0.1, B: 0.3, C: 100 } Sets { A , B , C , D , E } Geospatial Indexes { A: (51.5, 0.12), B: (32.1, 34.7) }
  12. Jedis Lettuce JRedisJSON JRediSearch JRedisBloom JRedisTimeSeries JRedisGraph JRedisAI JRedisGears Jedis-based

    Module Clients LOW-LEVEL COMMAND-BASED COMMAND-BASED AND SOME QUERYING APIS
  13. Jedis Lettuce Spring Data Redis JRedisJSON JRediSearch JRedisBloom JRedisTimeSeries JRedisGraph

    JRedisAI JRedisGears Jedis-based Module Clients LOW-LEVEL COMMAND-BASED COMMAND-BASED AND SOME QUERYING APIS
  14. Jedis Lettuce Spring Data Redis JRedisJSON JRediSearch JRedisBloom JRedisTimeSeries JRedisGraph

    JRedisAI JRedisGears Jedis-based Module Clients LOW-LEVEL COMMAND-BASED TEMPLATES + BASIC OBJECT-MAPPING/INDEXING COMMAND-BASED AND SOME QUERYING APIS
  15. Spring Data Redis JRedisJSON JRediSearch JRedisBloom JRedisTimeSeries JRedisGraph JRedisAI JRedisGears

    Jedis-based Module Clients Redis OM Spring MULTI-MODEL OBJECT-MAPPING AND QUERYING
  16. DEMO A sample domain mapped to Redis Hashes Spring Data

    Repositories powered by RediSearch A sample domain mapped to Redis JSON More complex searching with RediSearch Some extras (ITP)... 
 Entity Streams, Bloom Filters, AutoComplete