Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自律機械知能の行動観察
Search
ぶんちん
December 14, 2023
Science
0
110
自律機械知能の行動観察
ぶんちん
December 14, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
17
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
43
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
41
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
41
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
73
良書紹介02_Head First データ解析
bunnchinn3
0
34
良書紹介01_生命科学・生物工学のための間違いから学ぶ実践統計解析
bunnchinn3
0
51
OJT指導のはじめかた
bunnchinn3
0
140
ぶんちん流データサイエンス教育のコンセプト
bunnchinn3
0
170
Other Decks in Science
See All in Science
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
190
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
340
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
220
創薬における機械学習技術について
kanojikajino
13
4.4k
ウェーブレットおきもち講座
aikiriao
1
790
大規模画像テキストデータのフィルタリング手法の紹介
lyakaap
6
1.5k
Mechanistic Interpretability の紹介
sohtakahashi
0
350
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
200
ベイズ最適化をゼロから
brainpadpr
2
810
ベイズのはなし
techmathproject
0
290
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
2
580
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
160
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
For a Future-Friendly Web
brad_frost
175
9.4k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
How STYLIGHT went responsive
nonsquared
95
5.2k
GraphQLとの向き合い方2022年版
quramy
43
13k
Facilitating Awesome Meetings
lara
50
6.1k
Transcript
“なんもわからん”から始める実験の設計 自律機械知能の行動観察 最初の一歩 ぶんちん 2023年12月14日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
バーチャル学会2023に参加 3
私が途中参加したときの状況 4 中心部分はすでに完成 どんな振る舞いをするか 体系的な知見がない どうしたらAMIの面白さを 共有できるかわからない 調査方法に課題
まずは達成目標の定義 前提条件 実験時間・回数に制約あり YAIBAを用いた行動記録が使用可能 目標 学習がおこなわれていることをわかりやすく示す
AMIの行動に時間的な変化が生じること 周囲の環境から影響を受けること 5 前提条件に基づいて 検証可能な目標を立てる このプロセスが成果獲得に超重要!
時間的な変化を検証する環境 AMIに学習を進めさせ、周りの環境に飽きることを観測すればOKなはず 極力特徴のないシンプルなワールド できるだけ実験回数を増やすことができる環境 小さいサイズのワールド(当初計画の数分の1サイズ 6
初期の実験ワールド 発表に使用した実験ワールド
外部からの影響有無を検証する環境 共通点を持ちつつも、環境から得られる情報が明確に異なる環境 同じ形状で、同じ行動が可能である 外部から得られる情報が異なる 7 実験用ワールド シンプルな環境
壁の違いやランダム画像表示のある環境
実験結果 8 複数回実験し、様々なパターンがあるものの学習していることを示せた シンプルな環境 壁の違いやランダム画像表示のある環境
得られた結果と今後の展開 学習が進んでいることを示せた 時間経過による変化を示せた 外部からの情報により変化が生じることを示せた 一方で課題も見つかった 事実上、立ち止まることができない(対応済み) 動かすPCによって実験時間(行動&学習時間)が異なる
今後も様々な検討を予定 9