$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Baby Machine Learning
Search
Buzzvil
June 23, 2021
Programming
0
180
Baby Machine Learning
By Hes
Buzzvil
June 23, 2021
Tweet
Share
More Decks by Buzzvil
See All by Buzzvil
220903_GFS
buzzvil
0
520
Git 해부하기 2 + 3
buzzvil
0
51
Metastable Failure
buzzvil
0
270
Git 해부하기
buzzvil
0
62
Introduction to Plate Solving
buzzvil
0
53
Airbnb Minerva
buzzvil
0
390
Shape up 방법론
buzzvil
0
1k
Buzzvil Billing Data Pipeline
buzzvil
0
610
Journey of Dash's release-cycle
buzzvil
0
210
Other Decks in Programming
See All in Programming
愛される翻訳の秘訣
kishikawakatsumi
3
330
Cell-Based Architecture
larchanjo
0
130
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
150
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
0
170
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
210
chocoZAPサービス予約システムをNuxtで内製化した話
rizap_tech
0
160
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
160
関数実行の裏側では何が起きているのか?
minop1205
1
700
マスタデータ問題、マイクロサービスでどう解くか
kts
0
110
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
320
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
3
810
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
GitHub's CSS Performance
jonrohan
1032
470k
Making Projects Easy
brettharned
120
6.5k
It's Worth the Effort
3n
187
29k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Transcript
Hes 2021-06-23 Baby Machine Learning From Regression To Neural Network
Machine Learning •AI •Deep Learning •Classi fi cation •Regression •Clustering
•Data Mining •Reinforcement Learning ...umm "MATH"
Machine Learning •AI •Deep Learning •Classi fi cation •Regression •Clustering
•Data Mining •Reinforcement Learning ...umm "MATH"
How people think about House price • How many people?
• How Big? • How many rooms & bathrooms? • Where the house is? + ठࣁӂ, ࣁӂ
How people think about House price - Relation • How
many people? • Size • # Rooms & Bathrooms • Where the house is? • How Big? • ठࣁӂ • ࣁӂ • Family Size • Safety
How people think about House price - Priority • How
many people? • Size • # Rooms & Bathrooms • Where the house is? • How Big? • ठࣁӂ • ࣁӂ • Family Size • Safety 1
How people think about House price - Priority • How
many people? • Size • # Rooms & Bathrooms • Where the house is? • How Big? • ठࣁӂ • ࣁӂ • Family Size • Safety 1 Depends on a situation
Demand makes Price How people think about
Demand makes Price How people think about
makes Price Various Situation How people think about
Data Various Situation How people think about
Learn Method from Model variable Brain Data How people think
about
Let's start with simple model
What makes price Overview Location point • ठࣁӂ • ࣁӂ
• Safety • Family Size • Size • Rooms &BR Volume point Family point Price
What makes price Overview Location point • ठࣁӂ • ࣁӂ
• Safety • Family Size • Size • Rooms &BR Volume point Family point Price
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point Safetyо 95, ठࣁӂ 1(True), ࣁӂ 0(False), Family Sizeо 4ݺݶ, Location pointח 77 ա৬ঠ ೞפө... ۧѱ ߄Լݶ!
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point Ӓېࢲ ӒѦ ־о ೞחؘ?! ஏ Ѿҗ৬ पઁ чਸ ৈח ੌਸ.. Optimizerо ೞݶ غѷ!!
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point Ӓېࢲ ӒѦ ־о ೞחؘ?! ஏ Ѿҗ৬ पઁ чਸ ৈח ੌਸ.. Optimizerо ೞݶ غѷ!!
Linear Regression Happy case
Linear Regression Umm.. case
Activation Fuction move on from Linear Linear Regression = Non-Linear
Result + Activation(nonlinearities)
Activation Fuction move on from Linear Linear Regression = Non-Linear
Result + Activation(nonlinearities)
σ( ) Location point Logistic Regression House price =
σ( ) Location point Logistic Regression House price • ठࣁӂ
• ࣁӂ • Safety ? ? ? • Family Size ? Good / Not Good (Location) = աח ݅ೡ ഛܫਸ ঌҊ रয.. Ӓېࢲ ഛܫ?
Neural Network House price - Stack the regression a( )
Location point • ठࣁӂ • ࣁӂ • Safety • Family Size • Size • Rooms &BR a( ) Volume point a( ) Family point Price
Neural Network House price - Stack the regression a( )
Location point • ठࣁӂ • ࣁӂ • Safety • Family Size • Size • Rooms &BR a( ) Volume point a( ) Family point Prob σ( )
Neural Network House price - Stack the regression a( )
Location point • ठࣁӂ • ࣁӂ • Safety • Family Size • Size • Rooms &BR a( ) Volume point a( ) Family point Prob σ( ) Prob σ( ) Prob σ( ) ARGMAX
What we can do • Probability of Conversion • Classi
fi cation • Scoring • Ranking …
ೞ݅ ৈ য۵..