Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Baby Machine Learning
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Buzzvil
June 23, 2021
Programming
0
180
Baby Machine Learning
By Hes
Buzzvil
June 23, 2021
Tweet
Share
More Decks by Buzzvil
See All by Buzzvil
220903_GFS
buzzvil
0
560
Git 해부하기 2 + 3
buzzvil
0
54
Metastable Failure
buzzvil
0
280
Git 해부하기
buzzvil
0
68
Introduction to Plate Solving
buzzvil
0
57
Airbnb Minerva
buzzvil
0
420
Shape up 방법론
buzzvil
0
1k
Buzzvil Billing Data Pipeline
buzzvil
0
650
Journey of Dash's release-cycle
buzzvil
0
220
Other Decks in Programming
See All in Programming
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1k
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
550
Implementation Patterns
denyspoltorak
0
280
Data-Centric Kaggle
isax1015
2
760
SourceGeneratorのススメ
htkym
0
190
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
MUSUBIXとは
nahisaho
0
130
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
1.1k
Featured
See All Featured
Mind Mapping
helmedeiros
PRO
0
78
The Invisible Side of Design
smashingmag
302
51k
Paper Plane (Part 1)
katiecoart
PRO
0
4k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
55
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Testing 201, or: Great Expectations
jmmastey
46
8k
The Curious Case for Waylosing
cassininazir
0
230
A designer walks into a library…
pauljervisheath
210
24k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
From π to Pie charts
rasagy
0
120
Accessibility Awareness
sabderemane
0
49
Transcript
Hes 2021-06-23 Baby Machine Learning From Regression To Neural Network
Machine Learning •AI •Deep Learning •Classi fi cation •Regression •Clustering
•Data Mining •Reinforcement Learning ...umm "MATH"
Machine Learning •AI •Deep Learning •Classi fi cation •Regression •Clustering
•Data Mining •Reinforcement Learning ...umm "MATH"
How people think about House price • How many people?
• How Big? • How many rooms & bathrooms? • Where the house is? + ठࣁӂ, ࣁӂ
How people think about House price - Relation • How
many people? • Size • # Rooms & Bathrooms • Where the house is? • How Big? • ठࣁӂ • ࣁӂ • Family Size • Safety
How people think about House price - Priority • How
many people? • Size • # Rooms & Bathrooms • Where the house is? • How Big? • ठࣁӂ • ࣁӂ • Family Size • Safety 1
How people think about House price - Priority • How
many people? • Size • # Rooms & Bathrooms • Where the house is? • How Big? • ठࣁӂ • ࣁӂ • Family Size • Safety 1 Depends on a situation
Demand makes Price How people think about
Demand makes Price How people think about
makes Price Various Situation How people think about
Data Various Situation How people think about
Learn Method from Model variable Brain Data How people think
about
Let's start with simple model
What makes price Overview Location point • ठࣁӂ • ࣁӂ
• Safety • Family Size • Size • Rooms &BR Volume point Family point Price
What makes price Overview Location point • ठࣁӂ • ࣁӂ
• Safety • Family Size • Size • Rooms &BR Volume point Family point Price
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point Safetyо 95, ठࣁӂ 1(True), ࣁӂ 0(False), Family Sizeо 4ݺݶ, Location pointח 77 ա৬ঠ ೞפө... ۧѱ ߄Լݶ!
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point Ӓېࢲ ӒѦ ־о ೞחؘ?! ஏ Ѿҗ৬ पઁ чਸ ৈח ੌਸ.. Optimizerо ೞݶ غѷ!!
Linear Regression House price • ठࣁӂ • ࣁӂ • Safety
? ? ? • Family Size ? Location Point Ӓېࢲ ӒѦ ־о ೞחؘ?! ஏ Ѿҗ৬ पઁ чਸ ৈח ੌਸ.. Optimizerо ೞݶ غѷ!!
Linear Regression Happy case
Linear Regression Umm.. case
Activation Fuction move on from Linear Linear Regression = Non-Linear
Result + Activation(nonlinearities)
Activation Fuction move on from Linear Linear Regression = Non-Linear
Result + Activation(nonlinearities)
σ( ) Location point Logistic Regression House price =
σ( ) Location point Logistic Regression House price • ठࣁӂ
• ࣁӂ • Safety ? ? ? • Family Size ? Good / Not Good (Location) = աח ݅ೡ ഛܫਸ ঌҊ रয.. Ӓېࢲ ഛܫ?
Neural Network House price - Stack the regression a( )
Location point • ठࣁӂ • ࣁӂ • Safety • Family Size • Size • Rooms &BR a( ) Volume point a( ) Family point Price
Neural Network House price - Stack the regression a( )
Location point • ठࣁӂ • ࣁӂ • Safety • Family Size • Size • Rooms &BR a( ) Volume point a( ) Family point Prob σ( )
Neural Network House price - Stack the regression a( )
Location point • ठࣁӂ • ࣁӂ • Safety • Family Size • Size • Rooms &BR a( ) Volume point a( ) Family point Prob σ( ) Prob σ( ) Prob σ( ) ARGMAX
What we can do • Probability of Conversion • Classi
fi cation • Scoring • Ranking …
ೞ݅ ৈ য۵..