Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSとGCPのいいとこどりでつくる分析基盤のきほん
Search
chie8842
October 09, 2017
Technology
5
1.6k
AWSとGCPのいいとこどりでつくる分析基盤のきほん
DevfestTokyo2017の登壇資料です。 #DevfestTokyo #DevfestTokyo2017 #GDG #DevFest17
chie8842
October 09, 2017
Tweet
Share
More Decks by chie8842
See All by chie8842
MongoDB Atlas Search のご紹介
chie8842
2
1.5k
MongoDB Atlas Vectorsearchではじめる生成AIアプリ開発
chie8842
3
1.5k
AWS GlueとAWS Lake Formationではじめるデータマネジメント
chie8842
0
1k
Distributed Processing in Python
chie8842
2
680
クックパッドにおける推薦(と検索)の取り組み
chie8842
20
8k
Understanding distributed processing in Python
chie8842
2
2k
Performance Tuning Tips of TensorFlow Inference
chie8842
1
730
クックパッドにおけるCloud AutoML事例
chie8842
9
7.8k
Cookpad_Internship_MLOps_Lecture_2018
chie8842
35
16k
Other Decks in Technology
See All in Technology
Reading Code Is Harder Than Writing It
trishagee
2
120
Perlの生きのこり - エンジニアがこの先生きのこるためのカンファレンス2025
kfly8
1
240
AIエージェント入門
minorun365
PRO
7
2.7k
「正しく」失敗できる チームの作り方 〜リアルな事例から紐解く失敗を恐れない組織とは〜 / A team that can fail correctly
i35_267
2
700
PHPカンファレンス名古屋-テックリードの経験から学んだ設計の教訓
hayatokudou
2
530
Classmethod AI Talks(CATs) #17 司会進行スライド(2025.02.19) / classmethod-ai-talks-aka-cats_moderator-slides_vol17_2025-02-19
shinyaa31
0
170
脳波を用いた嗜好マッチングシステム
hokkey621
0
260
ソフトウェアエンジニアと仕事するときに知っておいたほうが良いこと / Key points for working with software engineers
pinkumohikan
1
140
PHPで印刷所に入稿できる名札データを作る / Generating Print-Ready Name Tag Data with PHP
tomzoh
0
180
Exadata Database Service on Cloud@Customer セキュリティ、ネットワーク、および管理について
oracle4engineer
PRO
2
1.5k
内製化を加速させるlaC活用術
nrinetcom
PRO
2
100
株式会社EventHub・エンジニア採用資料
eventhub
0
4.3k
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
The Cult of Friendly URLs
andyhume
78
6.2k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Rails Girls Zürich Keynote
gr2m
94
13k
Designing for humans not robots
tammielis
250
25k
Building Your Own Lightsaber
phodgson
104
6.2k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Visualization
eitanlees
146
15k
Transcript
"84ͱ($1ͷ͍͍ͱ͜ͲΓͰͭ͘Δ ੳج൫ͷ͖΄Μ !DIJF DIJFIBZBTIJEB 1
ࣗݾհ $IJF)BZBTIJEB 5XJUUFS!DIJF (JU)VCDIJF 3FUUZ*OD 4PGUXBSF&OHJOFFS
($1"84ػցֶश1ZUIPO4DBMB$MPKVSF%#WJN মϐΞϊςχεεϊϘ 2
Ϋϥυϑϧ׆༻Ͱ େنੳج൫ΛظؒͰ ߏஙͨ͠ࣄྫΛڞ༗͠·͢ɻ 3
ࠓ͢ൣғ ج൫ϨΠϠͷ ΞϓϦϨΠϠͷ ਐΊํ ͦͷͷͷ ͜͜ͷΛ͠·͢ɻ 4
ੳج൫ߏஙͷഎܠ • 3FUUZೖࣾॳ マネージャ わたし(⼊社初⽇、 肩書き:データ サイエンティスト) ͱΓ͋͑ͣɺੳج൫ͭͬͯ͘ɻ ϲ݄Ͱʂ ͑ɺੳج൫ʁ
5
ͦͦੳج൫ͱʁ • σʔλΛੵɾ׆༻͢ΔͨΊͷج൫ ੳج൫ ! ࢪࡦͷධՁ ΞυςΫ Ϩίϝϯυ 6
ͱͱ͋ͬͨੳج൫ͷ՝ᶃ ˙%8)ͷςʔϒϧઃܭͷ ྫ ΫΤϦ࣮ߦ࣌ʹաେͳαʔό Ϧιʔε͕ඞཁ ετϨʔδ༰ྔඡഭ ੳͮ͠Β͍ ʢΞυϗοΫੳͷʹ ෳࡶͳਖ਼نදݱநग़ʣ •
ෆཁͳϩά͕ϩάશମͷׂ • దͳσʔλܕ͕ΘΕ͍ͯͳ͍ • KTPOΦϒδΣΫτ͕ςΩετܗࣜͰೖ͍ͬͯΔ 7
ͱͱ͋ͬͨੳج൫ͷ՝ᶄ ˙Ϛελσʔλผͷ%#ʹ͋Δ • Ϛελσʔλͱಥ߹ͯ͠ੳ͍ͨ͠߹ ผͷڥʹσʔλΛҠ͢ඞཁ͕͋Δ • KPJO͍ͨ͠ΧϥϜಉ࢜Ͱσʔλܕ͕ҟͳΔ ੳऀ͝ͱʹڥߏங σʔλసૹίετ
8
ͱͱ͋ͬͨੳج൫ͷ՝ᶅ ˙ϩά૿େʹ͏ύϑΥʔϚϯεϘτϧωοΫ • ࣍όον͕ऴΘΒͳ͍ • ؾܰʹΞυϗοΫੳͰ͖ͳ͍ ˠΫΤϦΛ͛Δࡍ4MBDLʹใࠂ͢Δӡ༻ 9
ݱঢ়ཧ • ϩάαΠζɿʹे(#ʢH[KTPOঢ়ଶʣ ˠ͚ͬ͜͏Ͱ͔͍ɻ͜Ε͔Β૿͑Δ • ਖ਼نԽ͞Ε͍ͯͳ͍ϩά – ୯७ͳσʔλసૹਖ਼نදݱநग़Ͱ͢·ͳ͍ – 4FTTJPOJ[F&5-ͰΔ
• αʔϏεଆͷػೳՃʹ͏ཁ݅มߋ͕༧͞ΕΔ 10
৽͍͠ੳج൫ʹٻΊΒΕΔͷ • ੳऀʹͱ͍͍ͬͯ͢ – 42-ͦΕʹ४ͣΔΫΤϦݴޠ͕ར༻Ͱ͖Δ – Ϩεϙϯεεϧʔϓοτ • Ճ։ൃɾӡ༻͕͍͢͠ –
ྻมߋ͕ॊೈʹͰ͖Δ – ෳࡶͳ&5-ॲཧʹॊೈʹରԠͰ͖Δ • ίετʢΠχγϟϧϥϯχϯάʣ͕ݱ࣮తͰ͋Δ • εέʔϥϒϧͰ͋Δ – ੳରσʔλͷछྨαΠζ͕૿͑ͯରԠͰ͖Δ "84ͱ($1ͷ͍͍ͱ͜ͲΓͨ͠ੳج൫ 11
ͭͬͨ͘ੳج൫ 3FUUZαʔϏεج൫ 3FUUZੳج൫ʢ"84ʣ 3FUUZੳج൫ʢ($1ʣ Kinesis S3 EMR (Spark) S3 EC2
EC2 RDS(MySQL) 分析者 プランナ 12
ͭͬͨ͘ੳج൫ 3FUUZαʔϏεج൫ 3FUUZੳج൫ʢ"84ʣ 3FUUZੳج൫ʢ($1ʣ Kinesis S3 EMR (Spark) S3 EC2
EC2 RDS(MySQL) 分析者 プランナ σʔλϨΠΫ σʔλՃ πʔϧ %8)ɾ%. 13
σʔλϨΠΫɿ4 • ඇߏԽσʔλͷอଘ • αʔϏεͷಈ͍͍ͯΔڥʢ"84ʣʹ͍ۙॴʹσʔλ Λอ࣋͢Δ΄͏͕߹͕Α͍ – ωοτϫʔΫసૹίετ – ཧ͢͠͞
• ಉ͡όέοτͰϓϨϑΟοΫελάΛར༻ͨ͠ॊ ೈͳϥΠϑαΠΫϧͷӡ༻ • ,JOFTJT'JSFIPTFΛར༻͢Δ͜ͱͰ͔ΜͨΜʹ࣌͝ͱʹ σΟϨΫτϦΛ͚ͯอଘͰ͖Δ 14
%8)ɾ%.ɿ#JH2VFSZ • ੳऀʹͱ͍͍ͬͯ͢ – 4UBOEBSE42-͕ར༻Ͱ͖Δ – 6%'8JOEPXؔ͑Δ – εϓϨουγʔτQBOEBTEBUBGSBNFͱͷ࿈ܞ •
ޙͷςʔϒϧઃܭมߋ͕͍͢͠ – ςʔϒϧͷྻՃ͕Ͱ͖Δ • ҆ఆͨ͠ϨΠςϯγͱεϧʔϓοτ • ϝϯςφϯεϑϦʔ • ࣌ؒ՝ۚͰͳ͘ΫΤϦ՝ۚ • 3FE4IJGU"UIFOBΛ͏߹ͱൺͯɺ"84͔Β ($1ͷσʔλసૹ͕ൃੜ͢Δ͕ɺ ӡ༻ίετͷݮͰ૬ࡴͰ͖Δൣғͩͬͨ 15
%8)ൺֱ 3FE4IJGU "UIFOB #JH2VFSZ /8సૹίετ Ϧʔδϣϯ Ϧʔδϣϯؒసૹ ౦ژˠόʔδχ Ξ
Πϯλʔωοτ ӽ͠ͷసૹ ՝ۚํࣜ Քಇ࣌ؒ՝ۚ ΫΤϦ՝ۚ ΫΤϦ՝ۚ 6%' ˓ ✗ ˓ ΧϥϜมߋ ˓ ✗ ˚ ج൫ӡ༻ ඞཁ ඞཁ ΄ͱΜͲͳ͠ ΫΤϦ νϡʔχϯά ඞཁ ඞཁ ΄ͱΜͲͳ͠ ΫΤϦݴޠ TUBOEBSE42- QSFTUP TUBOEBSE42- ࣌ ੨จࣈࠓճͷཁ݅ʹద͍ͯ͠Δ͜ͱΛࣔ͢ 16
&.3 4QBSL σʔλՃ • αʔϏεଆͷϩάઃܭͷؔͰɺҎԼ͕ඞཁͩͬͨɻ – ෆཁͳϩάग़ྗ͕શମͷׂΛΊΔͨΊɺ#JH2VFSZసૹ͢ ΔલʹϑΟϧλॲཧ – 42-ͰදݱͰ͖ͳ͍ඇߏԽσʔλʹର͢Δෳࡶͳ&5-ॲཧ
• ϩά͕૿େͯ͠ΫϥελΛ૿͢͜ͱͰεέʔϧ Ͱ͖Δ • 42-Ͱࡁ·ͤΒΕΔͷ#JH2VFSZ্ͰՃ σʔλՃᶃʢ4QBSLʣ σʔλՃ ᶄʢ42-ʣ 17
ΘΕΔੳج൫ߏஙͷίπ • ૣ͘࡞ͬͯ͑͘ͳ͍ͷΛ࡞ͬͯҙຯ͕ͳ͍ • %8)ͷ߹ɺج൫෦ʮ࡞ͬͯյͯ͠ʯ͕؆୯ʹ ͢·ͳ͍ɻ • ج൫෦৻ॏʹܾΊͨ 5⽉ 6⽉
ཁ݅ώΞϦϯάɺɾٕज़બఆɺ1P$ &5-εΫϦϓτ࡞ɾ ڥߏங ͬͪ͜ʹ͔͚࣌ؒͨɻ ͪΌΜͱΘΕΔੳج൫͕Ͱ͖ͨʂ 18
͍͞͝ʹ • Ϋϥυϑϧ׆༻Ͱੳج൫ΛظؒͰ࡞ΕΔʂ – Ͱ̍ਓͰΔͷͭΒ͔ͬͨɻ৭ΜͳҙຯͰɻ • Ϋϥυଞͷٕज़ɺҰͭʹͩ͜ΘΒͣॊೈʹ׆༻͢Δ ͷେࣄʂ • ࠓճ৮Εͳ͔ٕͬͨज़બఆͷৄ͍͠෦ΞϓϦέʔγϣ
ϯϨΠϠʔͷͱ͔Λͷ95FDI+"84Ͱൃද͢Δ ༧ఆͳͷͰɺڵຯ͋Δํੋඇɻ 19
༻ޠ • σʔλϨΠΫ – ՃલͷੜϩάΛอଘ͢Δॴ • %8) – ੳ͍͢͠Α͏ʹՃ͞ΕͨσʔλΛ֨ೲ͢Δσʔλϕʔε •
%. – ੳ༻్ʹԠͯ͡ूܭޙͷσʔλͳͲΛ֨ೲ͢ΔͳͲɺαϯυ ϘοΫεతʹ͔ͭ͏ͨΊͷσʔλϕʔε • σʔλՃπʔϧ – ϩάΛੳ͍͢͠ܗʹܗ͢Δπʔϧ • ϫʔΫϑϩʔΤϯδϯ – Ұ࿈ͷσʔλॲཧͷϑϩʔΛཧ͢Δπʔϧ 20