Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ゾンビでわかる分類評価指標

Aipa
March 09, 2019

 ゾンビでわかる分類評価指標

PythonBeginners沖縄(ゼロからDeep1&DjangoでWebアプリ)@琉球大学 で発表してきたLT

https://python-beginners-okinawa.connpass.com/event/121317/

Aipa

March 09, 2019
Tweet

More Decks by Aipa

Other Decks in Technology

Transcript

  1. Python Beginnersԭೄ LT
    ΞΠύʔୂ௕

    View Slide

  2. ࣗݾ঺հ

    View Slide

  3. ࣗݾ঺հ
    • ΞΠύʔୂ௕(ࠓ೥ 29)
    • ͪΎΒσʔλגࣜձࣾ
    • PyData.OkinawaڞಉΦʔΨφΠβʔ
    • Pythonͱո्ͱΫιΈ͍ͨͳөը͕޷͖Ͱ͢

    View Slide

  4. ࠂ஌

    View Slide

  5. PyData.Okinawa #38 LTେձ

    View Slide

  6. ঎඼͕͋Γ·͢ʂʂʢશһ౤ථʣ

    View Slide

  7. ͳΜͱࢀՃऀ͕গͳ͍ʢདྷͯ͘ΕཔΉʣ

    View Slide

  8. ຊ೔͓࿩͢Δ͜ͱ

    View Slide

  9. κϯϏͰΘ͔Δ෼ྨධՁࢦඪ

    View Slide

  10. ͜ͷલΈͨөը

    View Slide

  11. ͜ͷલΈͨөը
    ৽ײછ

    View Slide

  12. ͜ͷલΈͨөը
    ৽ײછ
    ˺৽װઢ

    View Slide

  13. Կ͜ͷ๜୊ɾɾɾ
    https://twitter.com/geri_otto_mrs/status/811131042723598336

    View Slide

  14. Կ͜ͷ๜୊ɾɾɾ
    өը͸໘ന͔ͬͨͷͰ҆৺͍ͯͩ͘͠͞

    View Slide

  15. ͯ͞ɺ͜ͷөըͷ͝঺հ
    ฼͕͍Δ佂ࢁʹ͍͖͍ͨ෕ͱ່͕
    ৐͍ͬͯΔ৽װઢͷ৐٬Ұਓ͕
    ಥવκϯϏԽͯ͠ɺӺһΛऻ͏
    ऻΘΕͨӺһɾ৐٬͸਺ඵޙκϯϏʹͳΓ
    ػ಺͸ύϯσϛοΫɾେύχοΫ
    Ռͨͯ͠ɺ෕ͱ່͸佂ࢁʹ͍Δ฼ͷݩʹ
    ແࣄʹͨͲΓண͚Δͷ͔
    ݂ΈͲΖͳඳࣸͰ৺Թ·ΔɺؖࠃκϯϏөը

    View Slide

  16. ͯ͞ɺ͜ͷөըͷ͝঺հ
    ฼͕͍Δ佂ࢁʹ͍͖͍ͨ෕ͱ່͕
    ৐͍ͬͯΔ৽װઢͷ৐٬Ұਓ͕
    ಥવκϯϏԽͯ͠ɺӺһΛऻ͏
    ऻΘΕͨӺһɾ৐٬͸਺ඵޙκϯϏʹͳΓ
    ػ಺͸ύϯσϛοΫɾେύχοΫ
    Ռͨͯ͠ɺ෕ͱ່͸佂ࢁʹ͍Δ฼ͷݩʹ
    ແࣄʹͨͲΓண͚Δͷ͔
    ݂ΈͲΖͳඳࣸͰ৺Թ·ΔɺؖࠃκϯϏөը

    View Slide

  17. ύϯσϛοΫ
    ΋͠ݱ࣮ͩͬͨΒɾɾɾ

    View Slide

  18. ύϯσϛοΫ
    ΋͠ݱ࣮ͩͬͨΒɾɾɾ
    ւΛഎʹ

    View Slide

  19. ύϯσϛοΫ
    ΋͠ݱ࣮ͩͬͨΒɾɾɾ
    ւΛഎʹόϦέʔυ࡞ͬͯɺ

    View Slide

  20. ύϯσϛοΫ
    ΋͠ݱ࣮ͩͬͨΒɾɾɾ
    ւΛഎʹόϦέʔυ࡞ͬͯɺདྷΔ΋ͷશһ΍ͬͯ͠·͑͹ྑ͍

    View Slide

  21. ύϯσϛοΫ
    ΋͠ݱ࣮ͩͬͨΒɾɾɾ
    ւΛഎʹόϦέʔυ࡞ͬͯɺདྷΔ΋ͷશһ΍ͬͯ͠·͑͹ྑ͍

    View Slide

  22. ͍͚·ͤΜ

    View Slide

  23. ؒҧ͑ͯੜଘऀΛࣹࡴͯ͠͠·͏έʔε
    κϯϏөը͋Δ͋Δ

    View Slide

  24. ؒҧ͑ͯੜଘऀΛࣹࡴͯ͠͠·͏έʔε
    κϯϏөը͋Δ͋Δ

    View Slide

  25. ؒҧ͑ͯੜଘऀΛࣹࡴͯ͠͠·͏έʔε
    κϯϏөը͋Δ͋Δ

    View Slide

  26. Α͘ͳ͍

    View Slide

  27. ෼ྨ͠·͠ΐ͏
    κϯϏΛ1ɺੜଘऀΛ0ͱ͍͏ϥϕϧΛషΓ෇͚Δ
    0
    0
    1
    1 1

    View Slide

  28. 1Λ΍Δ
    ෼ྨ͠·͠ΐ͏

    View Slide

  29. ʢͻͱΓؒҧ͑ͯ΍ͬͯ͠·ͬͨͬΆ͍ͧɾɾɾʣ
    ෼ྨͨ݁͠ՌΛ֬ೝ͠·͠ΐ͏

    View Slide

  30. ධՁࢦඪ

    View Slide

  31. ࠞಉߦྻʢconfusion matrixʣ
    • ෼ྨ໰୊ͷ݁ՌͷੑೳΛ໌Β͔ʹ͢Δߦྻ
    • ਅཅੑ(true positive → TP)
    • ਅӄੑ(true negative → TN)
    • ِཅੑ(false positive → FP)
    • ِӄੑ(false negative → FN)

    View Slide

  32. ࠞಉߦྻʢconfusion matrixʣ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    1 /
    1 51 '/
    / '1 5/

    View Slide

  33. κϯϏ͕50ਓ(?)
    ੜଘऀ͕50໊͖ͨ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    View Slide

  34. ׬ᘳʹ෼ྨͰ͖ΔͱͲ͏ͳΔʁ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    View Slide

  35. ධՁࢦඪ

    View Slide

  36. ਖ਼ղ཰ʢAccuracyʣ
    • ༧ଌͨ݁͠Ռͱ࣮ࡍͷ஋͕Ұகׂͨ͠߹
    • ʢTP + TNʣ / ʢTP + TN + FP + FNʣ
    • FPͱFN͕0ͳΒ1.0ʹͳΔʢ100%ʣ

    View Slide

  37. ʢ࠶ܝʣκϯϏ͕50ਓ(?)
    ੜଘऀ͕50໊͖ͨ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    • (27 + 45) / (27 + 45 + 5 + 23) = 72%
    • ਖ਼ղ཰͸72%

    View Slide

  38. Α͠ʂ72%ͷਫ਼౓ͩʂ

    View Slide

  39. ͱ͜Ζ͕͗ͬͪΐΜ

    View Slide

  40. ੈք͕ฏ࿨ʹͳ͖ͬͯͨ
    → κϯϏ͕গͳ͘ͳ͖ͬͯͨ

    View Slide

  41. κϯϏ͕10ਓ(?)
    ੜଘऀ͕90໊͖ͨ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    • (0 + 90) / (0 + 90 + 0 + 10) = 90%
    • ਖ਼ղ཰͸90%

    View Slide

  42. Α͠ʂ90%ͷਫ਼౓ͩʂ
    ҆৺Ͱ͖Δʂʂ

    View Slide

  43. κϯϏ͕10ਓ(?)
    ੜଘऀ͕90໊͖ͨ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    • (0 + 90) / (0 + 90 + 0 + 10) = 90%
    • ਖ਼ղ཰͸90%
    ͓Θ͔Γ͍͚ͨͩͨͩΖ͏͔

    View Slide

  44. View Slide

  45. κϯϏ 10ਓ
    ༧ଌʹࣦഊ͍ͯ͠Δʂʂʂ
    ʢ৵ೖ͞Εͨʣ

    View Slide

  46. κϯϏ 10ਓ
    ༧ଌʹࣦഊ͍ͯ͠Δʂʂʂ
    ʢ৵ೖ͞Εͨʣ

    View Slide

  47. Accuracyͷ໰୊఺
    • Ξϯόϥϯεʢෆۉߧʣͳσʔλʹ͸దͯ͠
    ͍ͳ͍
    • গͳ͍σʔλͷ༧ଌ͕શ͋ͨ͘Βͳͯ͘΋ɺ
    ׂ߹͸ߴ͘ͳΔ܏޲ʹͳΔ
    • TPɺTNɺFPɺFN͕ἧΘͳ͍ͱࢉग़Ͱ͖ͳ͍

    View Slide

  48. κϯϏΛඞͣݟ෼͚ΔϞσϧ or
    κϯϏΛඞͣಀ͞ͳ͍Ϟσϧ
    • લऀ͸ద߹཰ʢPrecisionʣ
    • ޙऀ͸࠶ݱ཰ʢRecallʣ
    • ͜ͷ̎ͭΛ͍͍ײ͡ʹ

    ௐ੔ͨ͠ͷ͕F1-scoreʢF஋ʣ

    View Slide

  49. ద߹཰ʢPrecisionʣ
    • Ϟσϧ͕κϯϏͱ༧ଌͨ݁͠ՌʹɺͲΕ͚ͩ
    κϯϏؚ͕·Ε͍͔ͯͨ
    • TP / (TP + FP)
    • 0 / (0 + 0) = 0%
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    View Slide

  50. ద߹཰ʢPrecisionʣ
    • ؒҧ͑ͯੜଘऀΛ΍ͬͯ͠·͍ͨ͘ͳ͍ͳΒɺ
    PrecisionΛਫ਼౓ͱ͢Ε͹ྑ͍
    • Precision 100%ͳΒੜଘऀΛܸͪؒҧ͑Δ

    ͜ͱ͸ͳ͍
    • ݟۃΊతͳࢦඪ

    View Slide

  51. ࠶ݱ཰ʢRecallʣ
    ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    • κϯϏʹର͠Ϟσϧ͕κϯϏͱ൑அׂͨ͠߹
    • TP / (TP + FN)
    • 0 / (0 + 10) = 0%

    View Slide

  52. ࠶ݱ཰ʢRecallʣ
    • όϦέʔυલ·ͰκϯϏΛ౸ୡͤͨ͘͞ͳ͚
    Ε͹ɺશһ΍ͬͯ͠·͑͹ྑ͍ʢήεإʣ
    • Recall 100%ͳΒκϯϏΛಀ͠࿙Ε͕ͳ͍
    • ໢ཏతͳࢦඪ

    View Slide

  53. F஋ʢF1-scoreʣ
    • PrecisionͱRecallΛ૊Έ߹Θͤͯௐ੔ͨ͠஋
    • 2 * Precision * Recall / Precision + Recall
    • 2 * 0 * 0 / 0 + 0 = 0% ༧ଌ͞ΕͨΫϥε
    ࣮ࡍͷΫϥε
    κϯϏͱ༧ଌ
    κϯϏ
    ͡Όͳ͍ͱ
    ༧ଌ
    κϯϏ 51
    '/

    κϯϏ
    ͡Όͳ͍
    '1
    5/

    View Slide

  54. ࡶײ
    • ෼ྨͷධՁࢦඪ͸ࠞಉߦྻΛݩʹࢉग़͞ΕΔ
    • AccuracyͰ͸͏·͘ධՁͰ͖ͳ͍৔߹͕͋Δ
    • ϒϩάͱ͔࿦จʹ͋Δʮਫ਼౓ʯ͸ԿΛࢦ͍ͯ͠Δͷ
    ͔ҙࣝͯ͠ಡΉͱ͍͍͔΋
    • ͜Ε͕Θ͔Ε͹ROCۂઢɺAUCͱ͔ཧղͰ͖Δ

    View Slide

  55. View Slide