$30 off During Our Annual Pro Sale. View Details »

自然言語処理を用いた効果的な広告テキストの自動生成【CADC2022】

 自然言語処理を用いた効果的な広告テキストの自動生成【CADC2022】

インターネット広告は年々増加の一途をたどっており、その激しい新陳代謝から人手による制作は限界を迎えています。さらに、近年の人工知能技術の成功から、広告クリエイティブ、特に自然言語処理技術を使った広告テキストの自動生成には大きな期待が寄せられています。この発表では、NAACL や EMNLP などの難関国際会議にも採択され、AI Lab と極プロダクトを中心に研究開発してきた、自然言語生成技術を用いた広告効果を考慮した広告テキストの自動生成手法と、その周辺の取り組みについてご紹介します。

CyberAgent
PRO

March 24, 2022
Tweet

More Decks by CyberAgent

Other Decks in Technology

Transcript

  1. View Slide

  2. ுഓೇ
    3FTFBSDI4DJFOUJTU
    $ZCFS"HFOU"*-BC
    w ೥ʹ"*-BCʹத్ೖࣾ
    w ۃϓϩμΫτͱ࿈ܞ͠ͳ͕Βɺ޿ࠂςΩετͷࣗಈੜ੒΍
    ޿ࠂޮՌͷ༧ଌͳͲɺࣗવݴޠॲཧٕज़ͷ޿ࠂ෼໺ద༻ʹ
    ͍ͭͯͷݚڀ։ൃʹैࣄ

    View Slide

  3. ߴ඼࣭ͳ޿ࠂΛ
    ࣗಈͰ੍࡞͠ଓ͚͍ͨ

    View Slide

  4. എܠ
    ੍࡞෺ͷधཁ֦େ
    ੍࡞Ϧιʔεͷރׇ
    ਓ޻஌ೳٕज़ͷ୆಄

    View Slide

  5. എܠ੍࡞෺ͷधཁ֦େ
    ࢢ৔ن໛ͷ֦େ
    Πϯλʔωοτ޿ࠂࢢ৔͸͜͜೥Ͱ໿ഒ΋ͷن໛ʹ੒௕
    ग़యɿ೥ͷΠϯλʔωοτ޿ࠂഔମඅ͸ஹԯԁʹɻϞόΠϧʴಈը޿ࠂͷ৳ͼʹ஫໨

    View Slide

  6. ݕࡧ࿈ಈܕ޿ࠂʴσΟεϓϨΠ޿ࠂͰ૯޿ࠂඅͷ͏ͪ
    ໿ׂͷγΣΞΛތΔ
    ग़యɿʮ೥Πϯλʔωοτ޿ࠂഔମඅʯղઆɻϚεഔମͱ΄΅ฒΜͩʮஹԁ௒ʯͷ
    ಺༁͸ʁ
    എܠ੍࡞෺ͷधཁ֦େ

    View Slide

  7. σΟεϓϨΠ޿ࠂͱ͸
    w 8FCϖʔδͳͲͷ޿ࠂ࿮ʹදࣔ͞ΕΔ޿ࠂ
    w ߦಈཤྺͳͲ͔Βझຯᅂ޷ʹ߹͏Α͏ͳλʔήςΟ
    ϯά͕͞ΕΔ͜ͱ΋͋Δ
    w ը૾ɺςΩετɺಈըͳͲ͞·͟·ͳഔମ͔Βߏ੒
    ͞ΕΔ

    View Slide

  8. ݕࡧ࿈ಈܕ޿ࠂͱ͸
    w ݕࡧΤϯδϯͰ࢖༻͞ΕΔ޿ࠂ
    w ϢʔβͷೖྗΩʔϫʔυͱ޿ࠂओͷઃఆΩʔϫʔυ͕Ϛονͨ͠৔߹ʹදࣔ͞ΕΔ
    w جຊతʹςΩετͷΈͰߏ੒͞ΕΔ

    View Slide

  9. എܠ੍࡞Ϧιʔεͷރׇ
    ݕࡧΫΤϦ਺͸૿ՃͷҰ్ΛͨͲΔ
    w ຖ೥લ೥ͷ໿લޙͰ૿͑ଓ͚Δͱ༧૝͞ΕΔ
    w ೥࣌఺Ͱ໿ஹҎ্΋ͷݕࡧΩʔϫʔυʹ౸ୡ͢Δͱ
    ͍ΘΕΔग़యɿ(PPHMF4FBSDI4UBUJTUJDTBOE'BDUT :PV.VTU,OPX


    ͜ΕΒશͯͷΩʔϫʔυʹ
    ରͯ͠ɺਓखʹΑͬͯߴ඼࣭ͳ
    ޿ࠂΛ੍࡞͢Δͷ͸೉͍͠

    View Slide

  10. എܠਓ޻஌ೳٕज़ͷ୆಄
    ۙ೥ɺଟ͘ͷ෼໺ʹͯϒϨΠΫεϧʔΛى͜͢
    IUUQTXXXXJSFEDPNTUPSZBJUFYUHFOFSBUPSHQUMFBSOJOHMBOHVBHFpUGVMMZ
    IUUQTEFFQNJOEDPNSFTFBSDIDBTFTUVEJFTBMQIBHPUIFTUPSZTPGBS
    ೥)JOUPOΒͷݚڀνʔϜ͕0$3ͷίϯϖςΟγϣϯͰ
    ਂ૚ֶशΛ࢖ͬͨख๏Ͱطଘख๏ʹେࠩΛ͚ͭͯ༏উ
    <,SJ[IFWTLZFUBM /FVS*14>
    ೥%FFQ.JOEͷڧԽֶशϞσϧʮ"MQIB(Pʯ͕
    ғޟͰ౰࣌ͷੈքع࢜ϨʔτҐͷᐬܿʹউར
    <4JMWFSFUBM /BUVSF>
    ೥0QFO"*ͷݴޠϞσϧʮ(15ʯʹΑͬͯ
    ·ΔͰਓ͕ؒॻ͍ͨΑ͏ͳߴਫ਼౓ͳจষΛੜ੒Մೳʹ
    <#SPXOFUBM /FVS*14>

    View Slide

  11. എܠ
    ੍࡞෺ͷधཁ֦େ
    ੍࡞Ϧιʔεͷރׇ
    ਓ޻஌ೳٕज़ͷ୆಄

    View Slide

  12. ߴ඼࣭ͳ޿ࠂΛ
    ࣗಈͰ੍࡞͠ଓ͚͍ͨ

    View Slide

  13. ߴ඼࣭ͳ޿ࠂΛ
    ࣗಈͰ੍࡞͠ଓ͚͍ͨ
    w w w w w w

    View Slide

  14. ͲͪΒ͕ߴ඼࣭ʁ
    74

    View Slide

  15. 74
    DMJDLT DMJDLT
    ͲͪΒ͕ߴ඼࣭ʁ

    View Slide

  16. 74
    DMJDLT DMJDLT
    ͲͪΒ͕ߴ඼࣭ʁ

    View Slide

  17. ͲͪΒ͕ΑΓΫϦοΫ͞ΕΔʁ
    74
    74

    View Slide

  18. 74
    74
    ࣗવɾྲྀெͳ೔ຊޠ ෆࣗવͳ೔ຊޠ
    ݕࡧΩʔϫʔυʹϚον͍ͯ͠Δ ݕࡧΩʔϫʔυʹϚον͍ͯ͠ͳ͍
    ͲͪΒ͕ΑΓΫϦοΫ͞ΕΔʁ

    View Slide

  19. ߴ඼࣭ͳ޿ࠂจͱ͸
    ҎԼͷ߲໨Λ඼࣭֬ೝͷͨΊͷ൑அࢦඪͱߟ͑Δ
    ͜ͱ͕Ͱ͖Δ
    w޿ࠂ഑৴࣮੷
    wࣗવ͞ɺྲྀெ͞
    wݕࡧΩʔϫʔυͱͷؔ࿈ੑ

    View Slide

  20. ߴ඼࣭ͳ޿ࠂΛ
    ࣗಈͰ੍࡞͠ଓ͚͍ͨ
    w w w w w

    View Slide

  21. جຊతͳ޿ࠂӡ༻ͷϑϩʔ
    ޿ࠂςΩετΛࣗಈͰ࡞Δ

    View Slide

  22. جຊతͳ޿ࠂӡ༻ͷϑϩʔ
    ޿ࠂςΩετΛࣗಈͰ࡞Δ
    ͜͜ΛࣗಈԽ͍ͨ͠

    View Slide

  23. ೖྗΩʔϫʔυɺ-1৘ใͳͲ
    ग़ྗ޿ࠂจ
    Ωʔϫʔυ ΢Ϛ່ɼ%..ɼ1$ɼը໘
    λΠτϧ
    ΢Ϛ່ϓϦςΟʔμʔϏʔ%..(".&4൛ެࣜαΠτ
    ʛ$ZHBNFT
    આ໌จ
    ήʔϜʮ΢Ϛ່ϓϦςΟʔμʔϏʔʯ%..(".&4൛͕
    ग़૸தʂ1$ͷେը໘Ͱഭྗຬ఺ͷϥΠϒɾϨʔεγʔϯ
    Λָ͠΋͏ʂεϚʔτϑΥϯ൛ͱσʔλ࿈ܞͯ͠༡΂Δʂ
    ޿ࠂςΩετΛࣗಈͰ࡞Δ

    View Slide

  24. ςϯϓϨʔτϕʔε
    ޿ࠂจςϯϓϨʔτʹରͯ͠ɺద੾ʹΩʔϫʔυΛૠೖ͢Δ
    <#BSU[FUBM &$><'VKJUBFUBM *$&$>
    ܎Γड͚ؔ܎ͳͲͷߏจ৘ใͷར༻
    ঎඼ͳͲͷ৘ใΛઆ໌ͨ͠௕͍จ௕ͷߏจ໦Λ࡞੒͠ɺద੾ʹ
    ࢬמΓ͢Δ͜ͱͰ୹͍޿ࠂจΛ࡞੒<'VKJUBFUBM *$&$>
    ݴޠϞσϧ
    -1͔Β୯ޠͷ࿈ͳΓΛநग़͠ɺۃੑ൑ఆثͰϙδςΟϒ͞Λ
    ߟྀͯ͠ɺݴޠϞσϧΛ࢖ͬͯ޿ࠂจੜ੒<5IPNBJEPVFUBM $*,.
    >
    ͍Ζ͍ΖͳΞϓϩʔν

    View Slide

  25. ςΩετ͔ΒςΩετΛੜ੒͢Δܥྻม׵ϞσϧʢTFRTFRʣ
    <4VUTLFWFSFUBM /FVS*14>ͷొ৔
    4FRTFRϞσϧ͸ػց຋༁ɺࣗಈཁ໿ɺର࿩ॲཧͳͲͷ
    ࣗવݴޠੜ੒෼໺Ͱ਺ʑͷ੒ޭ
    ήʔϜ ΢Ϛ່ ʜ ༡΂Δʂ
    ΢Ϛ່ ϓϦςΟ ʜ ޷ධൃചத
    ΢Ϛ່ ϓϦςΟ ʜ
    χϡʔϥϧωοτϫʔΫ΁

    View Slide

  26. ͔͠͠ैདྷͷTFRTFRख๏͸޿ࠂͷޮՌΛ௚઀ߟྀͰ͖ͳ͍
    w ޿ࠂޮՌͷ஋͸ඍ෼Ͱ͖ͳ͍ͷͰɺܭࢉάϥϑʹ૊ΈೖΕΒ
    Εͳ͍
    w ௚઀తͳ޿ࠂޮՌҎ֎ʹ΋ɺྲྀெ͞ɺΩʔϫʔυؔ࿈౓ͳͲ
    ͷࢦඪ΋ߟྀ͍ͨ͠
    ޿ࠂςΩετΛࣗಈͰ࡞Δ
    ήʔϜ ΢Ϛ່ ʜ ༡΂Δʂ
    ΢Ϛ່ ϓϦςΟ ʜ ޷ධൃചத
    ΢Ϛ່ ϓϦςΟ ʜ
    ޿ࠂ഑৴࣮੷ɺࣗવ͞ɾྲྀெ͞ɺݕࡧΩʔϫʔυͱͷؔ࿈ੑ

    View Slide

  27. ڧԽֶशͷऔΓೖΕ
    4FMGDSJUJDBM4FRVFODF5SBJOJOH 4$45
    <3FOOJFFUBM $713>
    ैདྷͷTFRTFRͰܭࢉ͞ΕΔଛࣦؔ਺ͱɺαϯϓϦϯάʹΑΓಘΒΕͨτʔΫϯʹରͯ͠ใु
    Λܭࢉͯ͠ଛࣦؔ਺ʹՃ͑ͯ࠷దԽ͢Δ

    View Slide

  28. ڧԽֶशͷऔΓೖΕ
    ڧԽֶश 4$45
    Λಋೖͨ͠޿ࠂจͷࣗಈੜ੒Ϟσϧͷશମਤ<,BNJHBJUPFUBM /""$->
    If you are nding the most popular insurance ...
    Decoder Output
    by Sampling!y!
    Decoder Output
    by MLE!y*
    Input!x
    BiLSTM
    Layer
    Attention
    Layer
    Context
    Vector c
    Calculating
    Rewards r
    Advertisement Quality
    score calculated with GBRT
    Fluency score calculated with
    LSTM Language Model
    Relevance score calculated with Keyword Matching
    Lmle : Loss of Maximum
    Likelihood Estimation
    Lrl : Loss of
    Reinforcement Learning
    Model Parameters
    Reference y
    Which insurance is the best ...
    Checkout the most popular insurance ...
    Document Tag Keywords Contents of a web-page
    r = rF + rR + rQ



    "*-BCɺࣗવݴޠॲཧ෼໺ͷτοϓΧϯϑΝϨϯεʮ/""$-)-5ʯʹͯڞஶ࿦จ࠾୒ɹʕ޿ࠂޮՌΛߟྀͨ͠޿ࠂจੜ੒ख๏ΛఏҊʕ
    cגࣜձࣾαΠόʔΤʔδΣϯτ

    View Slide

  29. ڧԽֶशͷऔΓೖΕ
    ڧԽֶश 4$45
    ʹΑΓ޿ࠂޮՌ΍ͦͷଞͷࢦඪΛใुͱͯ͠ѻ͏͜ͱͰֶशՄೳʹ
    If you are nding the most popular insurance ...
    Decoder Output
    by Sampling!y!
    Decoder Output
    by MLE!y*
    Input!x
    BiLSTM
    Layer
    Attention
    Layer
    Context
    Vector c
    Calculating
    Rewards r
    Advertisement Quality
    score calculated with GBRT
    Fluency score calculated with
    LSTM Language Model
    Relevance score calculated with Keyword Matching
    Lmle : Loss of Maximum
    Likelihood Estimation
    Lrl : Loss of
    Reinforcement Learning
    Model Parameters
    Reference y
    Which insurance is the best ...
    Checkout the most popular insurance ...
    Document Tag Keywords Contents of a web-page
    r = rF + rR + rQ



    "*-BCɺࣗવݴޠॲཧ෼໺ͷτοϓΧϯϑΝϨϯεʮ/""$-)-5ʯʹͯڞஶ࿦จ࠾୒ɹʕ޿ࠂޮՌΛߟྀͨ͠޿ࠂจੜ੒ख๏ΛఏҊʕ
    cגࣜձࣾαΠόʔΤʔδΣϯτ
    If you are nding the most popular insurance ...
    Decoder Output
    by Sampling!y!
    Decoder Output
    by MLE!y*
    Input!x
    BiLSTM
    Layer
    Attention
    Layer
    Context
    Vector c
    Calculating
    Rewards r
    Advertisement Quality
    score calculated with GBRT
    Fluency score calculated with
    LSTM Language Model
    Relevance score calculated with Keyword Matching
    Lmle : Loss of Maximum
    Likelihood Estimation
    Lrl : Loss of
    Reinforcement Learning
    Model Parameters
    Reference y
    Which insurance is the best ...
    Checkout the most popular insurance ...
    Document Tag Keywords Contents of a web-page
    r = rF + rR + rQ



    ࣗવ͞ɺྲྀெ͞ Flu

    ੜ੒݁Ռʹରͯ͠ɺݴޠϞσϧͰ
    ࢉग़͞ΕΔʮΒ͠͞ʯ
    ݕࡧΩʔϫʔυͱͷؔ࿈ੑ Rel

    ੜ੒݁ՌͷΩʔϫʔυʹର͢ΔΧόʔ཰ͱ
    ΩʔϫʔυͷҐஔ
    ޿ࠂ഑৴࣮੷ QS

    ੜ੒݁Ռʹରͯ͠ɺաڈͷ޿ࠂ഑৴ͰಘΒΕͨ
    σʔλͰ܇࿅ͨ͠ճؼϞσϧʹΑͬͯࢉग़͞ΕΔ
    ਪఆ඼࣭஋

    View Slide

  30. ߴ඼࣭ͳ޿ࠂΛ
    ࣗಈͰ੍࡞͠ଓ͚͍ͨ
    w w w w w w w

    View Slide

  31. ੜ੒͞Εͨ޿ࠂͷධՁ
    ධՁ͢ΔͨΊͷํ๏
    wఆΊΒΕͨࢦඪͰࣗಈͰධՁʢࣗಈධՁʣ
    wਓ͕ؒ௚઀ݟͯධՁʢਓखධՁʣ
    w࣮ࡍʹ഑৴ͯ͠ධՁʢ഑৴ධՁʣ
    ΦϑϥΠϯධՁ
    ΦϯϥΠϯධՁ

    View Slide

  32. ΦϑϥΠϯධՁ
    ਓखධՁͰ͸ɺ޿ࠂ੍࡞ऀͱΤϯυϢʔβʔΛ૝ఆͨ͠
    Ϋϥ΢υιʔγϯάͦΕͧΕʹΑΔԼͷ߲໨ͷධՁ
    w ྲྀெੑ Fluency

    w ັྗ Attractive.

    w Ωʔϫʔυͱͷؔ࿈ੑ Relevance

    Model
    Copywriter Crowdsourcing
    Fluency Attractive. Relevance Fluency Attractive. Relevance
    Reference 87.5 25.5 24.4 75.6 26.8 29.1
    Seq2Seq 83.3 25.1 23.7 64.5 23.8 26.1
    + Flu, QS 81.7 25.3 22.8 64.3 24.4 26.6
    + Flu, Rel 77.5 24.2 23.7 60.9 24.8 26.2
    + Flu, Rel, QS 81.2 23.9 24.3 62.7 25.4 26.9

    View Slide

  33. ΦϯϥΠϯධՁ
    ࣗಈੜ੒͞Εͨ޿ࠂจΛ࣮ࡍʹ഑৴ͯ͠ҎԼͷ߲໨Λɺ
    ਓख੍࡞޿ࠂͱͷഒ཰ΛධՁ
    w දࣔճ਺ Impression

    w ΫϦοΫ཰ CTR

    w ফඅ༧ࢉ Cost

    Model Impression CTR Cost
    Seq2Seq 3.54x 0.66x 3.31x
    + Flu, Rel 3.80x 0.52x 3.62x
    + Flu, Rel, QS 1.32x 0.71x 2.58x

    View Slide

  34. ੍࡞͠ଓ͚ΔͨΊʹ
    ੜ੒⁶ධՁͷ܁Γฦ͠
    ͜ͷϧʔϓΛΑΓߴ଎ʹɺΑΓޮ཰తʹߦ͏ඞཁ

    View Slide

  35. '"45<,BXBNPUPFUBM &./-1>
    ਓखධՁΛΑΓޮ཰తʹߦ͏πʔϧͷ։ൃ
    $ZCFS"HFOUGBTUBOOPUBUJPOUPPM
    ࣗવݴޠॲཧ෼໺ͷτοϓΧϯϑΝϨϯεʮ&./-1ʯͷ4ZTUFN%FNPOTUSBUJPO5SBDLʹͯ࿦จ
    ࠾୒ʔϞόΠϧ୺຤༻ͷޮ཰తͳΞϊςʔγϣϯπʔϧΛఏҊʔcגࣜձࣾαΠόʔΤʔδΣϯτ

    View Slide

  36. '"45<,BXBNPUPFUBM &./-1>
    ଞπʔϧͱͷ࢖༻ײͷධՁ
    w ࡞ۀޮ཰ Efficiency

    w ࡞ۀਫ਼౓ Quality

    w ࢖༻ײ Usability

    Tool Efficiency (!) Quality (") Usability (!)
    Baseline (Mobile) 6.7 0.98 5.82
    FAST (Mobile, Card UI) 4.6 0.97 2.03
    FAST (Mobile, Multi-label UI) 4.9 0.97 3.15

    View Slide

  37. ݚڀ੒ՌͷϓϩμΫτ΁ͷ׆༻
    ࠓճ঺հͨ͠಺༰ΛؚΊɺଞʹ΋ଟ͘ͷख๏΍πʔϧ͕ݚڀ։ൃ͞Εɺ
    ࣮ࡍʹϓϩμΫτʹಋೖ͞Εɺݕূ͞Ε͍ͯΔ

    View Slide

  38. ߴ඼࣭ͳ޿ࠂΛ
    ࣗಈͰ੍࡞͠ଓ͚͍ͨ
    ͜Ε͔Β΋

    View Slide

  39. ͜Ε͔Β
    ͞ΒͳΔੜ੒඼࣭ͷ޲্
    w ྲྀெੑ
    w ଟ༷ੑ
    w ஧࣮ੑ
    ΑΓଟछͳσʔλͷ׆༻
    w ϚϧνϞʔμϧʢը૾ɺ-1ϨΠΞ΢τʣ
    <.VSBLBNJFUBM ݴޠॲཧֶձ>
    ࢼߦࡨޡͷͨΊͷ؀ڥ
    w ֤छධՁج൫ͷ੔උ
    w σʔλऩूͷͨΊͷج൫੔උ

    View Slide

  40. 3FGFSFODFT
    w<,SJ[IFWTLZFUBM /FVS*14>*NBHF/FU$MBTTJpDBUJPOXJUI%FFQ$POWPMVUJPOBM/FVSBM/FUXPSLT
    w<4JMWFSFUBM /BUVSF>.BTUFSJOHUIFHBNFPG(PXJUIEFFQOFVSBMOFUXPSLTBOEUSFFTFBSDI
    w<#SPXOFUBM /FVS*14>-BOHVBHF.PEFMTBSF'FX4IPU-FBSOFST
    w<#BSU[FUBM &$>/BUVSBMMBOHVBHFHFOFSBUJPOGPSTQPOTPSFETFBSDIBEWFSUJTFNFOUT
    w<'VKJUBFUBM *$&$>"VUPNBUJDHFOFSBUJPOPGMJTUJOHBETCZSFVTJOHQSPNPUJPOBMUFYUT
    w<5IPNBJEPVFUBM $*,.>"VUPNBUFETOJQQFUHFOFSBUJPOGPSPOMJOFBEWFSUJTJOH
    w<4VUTLFWFSFUBM /FVS*14>4FRVFODFUP4FRVFODF-FBSOJOHXJUI/FVSBM/FUXPSLT
    w<3FOOJFFUBM $713>4FMGDSJUJDBM4FRVFODF5SBJOJOHGPS*NBHF$BQUJPOJOH
    w<,BNJHBJUPFUBM /""$->"O&NQJSJDBM4UVEZPG(FOFSBUJOH5FYUTGPS4FBSDI&OHJOF"EWFSUJTJOH
    w<,BXBNPUPFUBM &./-1>'"45'BTU"OOPUBUJPOUPPMGPS4NBS5EFWJDFT
    w<.VSBLBNJFUBM ݴޠॲཧֶձ>-1UP5FYUϚϧνϞʔμϧ޿ࠂจੜ੒

    View Slide