Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Dakuon
December 16, 2025
Technology
0
1.1k
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
Dakuon
December 16, 2025
Tweet
Share
Other Decks in Technology
See All in Technology
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
150
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
0
310
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
280
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
320
Databricks Free Edition講座 データサイエンス編
taka_aki
0
290
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
2
310
なぜ今、コスト最適化(倹約)が必要なのか? ~AWSでのコスト最適化の進め方「目的編」~
htan
1
110
Context Engineeringの取り組み
nutslove
0
270
2026年はチャンキングを極める!
shibuiwilliam
9
1.9k
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
420
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
210
GSIが複数キー対応したことで、俺達はいったい何が嬉しいのか?
smt7174
3
140
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Six Lessons from altMBA
skipperchong
29
4.1k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
110
New Earth Scene 8
popppiees
1
1.5k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
Design in an AI World
tapps
0
140
For a Future-Friendly Web
brad_frost
182
10k
How to make the Groovebox
asonas
2
1.9k
Git: the NoSQL Database
bkeepers
PRO
432
66k
GitHub's CSS Performance
jonrohan
1032
470k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
110
Transcript
© Findy Inc. 2025.12.16 AI Engineering Summit Tokyo 2025 AI時代の新規LLMプロダクト開発:
Findy Insightsを3ヶ⽉で⽴ち上げた舞台裏と振り返り 1 ファインディ株式会社 データサイエンティスト 奥⽥ 堯⼦ @Daku-on
© Findy Inc. 2 ⾃⼰紹介
© Findy Inc. 3 ⾃⼰紹介 • 奥⽥ 堯⼦ (おくだ たかこ)
• ファインディ株式会社 データサイエンティスト • Python⼀筋 (プロトタイプ開発では⽣成AIにTypeScript を書かせるなど柔軟に対応) • 好きなモデルはGemini 3、開発ツールはClaude Code
© Findy Inc. 4 今⽇話すこと 1. Findy Insightsのご紹介 2. 開発の流れ
〜 PoCから本番実装 2.1. プロトタイプ作成⼿法の詳細 3. 設計振り返り Good編 4. 設計振り返り More編 5. まとめ
© Findy Inc. 5 Take Home Message 生成AIで“合意形成の回転数 ”を上げつつ、既存基盤で “運用リスク
”を下げ、スピードと安定を両取りできた • 「1日1プロトタイプ」の圧倒的スピード AI活用によるローコストなプロトタイプ作成でプロダクト マネージャー (PdM) との合意形成サイクルを極限まで短縮。 • 「既存資産」による安定稼働 ベクトルDB含むDB設計や認証基盤設計、非同期処理等は 既存バックエンドチームの知見(Python外の技術含む)をフル活 用。AIにより素早くこれらの知見を実装。
© Findy Inc. 6 Findy Insightsのご紹介
© Findy Inc. 内部処理概要 7 ⾳声‧テキストデータを アップロード PostgreSQL (pgvector) ユーザ
レスポンス AIエージェント クエリ RAG S3 ⽂字起こし
© Findy Inc. 8 開発の流れ PoCから本番実装まで
© Findy Inc. 開発チームの前提 9 1. Findy Team+の開発メンバー5名+奥⽥ 開発メンバーはミドル〜シニア 2.
奥⽥以外にLLMプロダクト開発経験なし 3. Findy Team+はRubyで開発してきたため、 Pythonの経験もチームとしてほぼなし
© Findy Inc. 開発の時系列 10 1. 2⽉:PoC開始 ひたすら技術検証とプロトタイプ作成 2. 5⽉:開発チームが集まる場でプロトタイプを⾒せながら
キックオフ 3. 6⽉:開発チームと「どう実装するか」を 相談しつつ開発 4. 9⽉:α版リリース🎉 新機能開発へ…
© Findy Inc. プロトタイプ起点の開発フロー 11 1. 奥⽥がPdMから要望をヒアリングし、 プロトタイプとして反映 2. 実動するプロトタイプで、UXや挙動の認識齟齬を
早期解消 3. 開発チームとコードベースで連携し、本番実装への 落とし込みを策定 → アジャイル開発における (コードを書く) ビジネスアナリストに近い
© Findy Inc. 12 プロトタイプ作成時に⼼がけたこと PoC編
© Findy Inc. プロトタイプ作成時に⼤事にしたこと (PoC編) 13 1. 並列処理による処理時間短縮 PoC段階では素早い試⾏錯誤が必須。 LLMにリクエストを投げる部分には並列処理を採⽤して
1回あたりの実験にかかる時間を短縮。 2. 細かいロギング どこでコケたかを素早く特定することでデバッグ時間を 短縮し、実験時間を確保。
© Findy Inc. プロトタイプ作成時に捨てたこと (PoC編) 14 1. エラーハンドリング‧テスト エラー即落ち。リトライや単体テスト⼀切無し。 2.
複雑なフロントエンド実装 ドラッグ&ドロップで⾳声ファイルをアップロードし、 処理時間を確認できるだけ。 3. 複雑なインフラ Cloud Runでバックエンドと フロントコンテナをデプロイ。
© Findy Inc. 15 プロトタイプ作成時に⼼がけたこと 新機能編
© Findy Inc. プロトタイプ作成時に⼤事にしたこと (新機能編) 16 1. 既存技術スタックとの整合性 テーブル定義やUIライブラリは本番準拠のものを使い、 細かい部分も含めた実現可能性を担保。
2. フロントだけでなくデータや処理フローも作成 処理にどの程度の時間がかかるか、精度はどの程度かを 確認することで、本番実装時に最適な処理フローを エンジニアが考慮できるように。
© Findy Inc. プロトタイプ作成時に捨てたこと (新機能編) 17 1. エラーハンドリング‧テスト エラー即落ち。リトライや単体テスト⼀切無し。 2.
インフラへのデプロイ 必要ならGitHub⾒て⾃分でローカルビルドしてね (AIにビルドさせてね)」という⽅針。 3. Figmaとのデザイン完全⼀致 技術的に表現できるか怪しい部分は検証するが、 細かいレイアウトやUIにはこだわらない。
© Findy Inc. 18 設計ふりかえり Good編
© Findy Inc. Good 1: レビュープロセスで技術の属⼈化を防ぐ 19 課題 • LLM周りの実装は特定メンバーに集中しやすい
• 技術がブラックボックス化するリスク 対策 LLM未経験メンバーも積極的にレビュー参加 (ランダムレビュワー) 効果 • チーム全体でLLM実装の知⾒が共有される • 属⼈化を防ぎ、チームの技術⼒が底上げされた
© Findy Inc. Good 2: pgvector + HNSW インデックス 20
背景 • ニアリアルタイム更新のRAGが必要 • RDBとしてPostgreSQLを選定する予定 • チームにRAG構築経験者が奥⽥だけ メリット • 新しいDBを追加する必要なし • データ不整合のリスクが低く、運⽤コストが増えない • バックエンドエンジニアにも馴染みがある
© Findy Inc. 21 設計ふりかえり More編
© Findy Inc. More 1: LangChain から LangGraph への移⾏ 22
現状と課題 • LangChain のシンプルなチェーンを使⽤ • 複雑なフロー制御が難しい 選定の背景 開発当初はLangGraphはオーバースペックと思っていた 期待される改善 • 条件分岐やループが明⽰的で状態遷移が可視化される → デバッグ性向上 & 新しいノード (機能) の追加が容易
© Findy Inc. More 2: LLMを含む関数のテスト戦略 23 現状の課題 LLM の出⼒が⾮決定的で従来のCIに適⽤しづらい
→ 品質劣化の検出が困難 この⽅向性のLLM Observabilityもまだ発展途上という認識... LLMのテストにおけるベストプラクティスは模索中です。 知⾒をお持ちの⽅は、ぜひ懇親会で情報交換させてください。
© Findy Inc. 24 まとめ
© Findy Inc. 25 Take Home Message (再掲) 生成AIで“合意形成の回転数 ”を上げつつ、既存基盤で
“運用リスク ”を下げ、スピードと安定を両取りできた • 「1日1プロトタイプ」の圧倒的スピード AI活用によるローコストなプロトタイプ作成でPdMとの 合意形成サイクルを極限まで短縮。 • 「既存資産」による安定稼働 ベクトルDB含むDB設計や認証基盤設計、非同期処理等は 既存バックエンドチームの知見(Python外の技術含む)をフル活 用。AIにより素早くこれらの知見を実装。
© Findy Inc. ご清聴ありがとうございました 26