Upgrade to Pro — share decks privately, control downloads, hide ads and more …

先端技術とメディア表現(FTMA2018) 第1回レポートまとめ

先端技術とメディア表現(FTMA2018) 第1回レポートまとめ

Digital Nature Group

May 25, 2018
Tweet

More Decks by Digital Nature Group

Other Decks in Research

Transcript

  1. Differentiable Plasticity: A New Method for Learning to Learn- arXiv

    2018 Thomas Miconi, Jeff Clune, Kenneth O. Stanley (Uber AI Labs) ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ CBDLQSPQͱޯ഑߱Լ๏Λ࢖ͬͯՄ઼ੑʢ)FCCJBO ͷ ͭͳ͕ΓΛσβΠϯ͢Δɽ %//ͰϔϒଇΛద༻ͨ͠΋ͷ͸͜Ε·Ͱͳ͔ͬͨɽ Y@K U ͕χϡʔϩϯͷग़ྗɽX@J K͸௨ৗͷ//ͷ܎਺ɽͦΕʹ )FCCଇΛද߲͢ΛՃ͑ͨɽ)FCC͸୯७ʹલޙͷϨΠϠʔͷɼ χϡʔϩϯͷग़ྗͷੵɽ(SBEJFOUEJTDFOUʹΑͬͯX@J KͱЋ@J K ΛUVOF͍ͯ͘͠ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ஋ͷύλʔϯهԱΛগͳ͍χϡʔϩϯͰͰ͖ΔΑ͏ʹͳͬͨɽ ը૾ͷ൒෼͚ͩݟͤͯ࠶ߏ੒͢Δ࣮ݧͰطଘͷ-45.͸Ͱ͖ͳ ͔ͬͨͷ͕Ͱ͖ΔΑ͏ʹͳͬͨɽYͷ໎࿏ͰɼڧԽֶशʹΑ Γ໨ҹͷҐஔʹͨͲΓண࣮͘ݧͰྑ͍Ϧβϧτɽ OFVSPNPEVMBUJPOͷํ๏͸༗ޮͱݴΘΕ͍ͯΔͷͰɼ Б΍Ћ΋ɼਆܦ׆ಈʹԠͯ͡มԽͤ͞Δͱྑ͍͔΋͠ Εͳ͍ɽ -FBSOJOHUPMFBSOXJUICBDLQSPQBHBUJPOPG)FCCJBO QMBTUJDJUZɼ.JDPOJ FUBM &WPMVUJPOBSZBEWBOUBHFTPGOFVSPNPEVMBUFEQMBTUJDJUZJO EZOBNJD SFXBSECBTFETDFOBSJPT4PMUPHHJP FUBM େીࠜ޺޾ ਓؒίʔε   
  2. World Models- arXiv 2018 David Ha (Google Brain) Jurgen Schmidhuber

    (NNAISENSE, Swiss AI Lab, IDSIA (USI & SUPSI)) ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ը໘σʔλ͔Β಺෦ϞσϧʹΑͬͯѹॖ৘ใͷ[ͱະདྷ ༧ଌͷ̷Λग़ྗ͠ɼͦͷग़ྗͱใुͷΈ͔ΒࣗΒͷߦ ಈΛֶश͢Δɽ 4DPSFͷ޲্ɽσʔλͷલॲཧ͕͍Βͳ͍ɽ Vision Modelʢߴ࣍ݩ৘ใͷѹॖʣ(VAE)ͱɼMemory RNNʢѹॖ৘ใͷ࣌ܥྻσʔλ ʢهԱʣ͔Βະདྷͷ༧ଌʣ(Mixture Density Network -RNN)ʢ͜ͷ2͕ͭ಺෦Ϟσϧͷ ੜ੒ʣͱɼControlerʢߦಈͷܾఆʣʢ࠷దԽʹCMA-ESΛ࢖༻ʣͷ3ͭΛ૊Έ߹Θͤ ͨɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ΧʔϨʔεήʔϜͷ4DPSFɽ7J[%PPN ஄Λආ͚ͯੜ͖࢒Δήʔ Ϝ ͷ4DPSFɽ ࠶ֶशͳ͠Ͱ7"&Λ৽͍͠λεΫʹޮՌతʹ࠶ར༻Ͱ͖ͳ͍ɽ খ͞ͳ-45.ϕʔεͷੈքϞσϧͰ͸ɼه࿥Λશͯύϥϝʔλத ʹอଘ͢Δ͜ͱ͕Ͱ͖ͳ͍ͷͰେ͖ͳϞσϧԽ͔֎෦هԱ͕ඞཁɽ $PSUJDBMJOUFSOFVSPOTUIBUTQFDJBMJ[FJOEJTJOIJCJUPSZDPOUSPMç <MJOL> )1J #)BOHZB %,WJUTJBOJ +4BOEFST ;)VBOH ",FQFDT /BUVSF େીࠜ޺޾ ਓؒίʔε   
  3. Towards the Automatic Anime Characters Creation with Generative Adversarial Networks

    (make girls moe) Yanghua Jin School of Computer Science Fudan University Jiakai Zhang School of Computer Science Carnegie Mellon University Minjun Li School of Computer Science Fudan Univerisity Yingtao Tian Department of Computer Science Stony Brook University Huachun Zhu School of Mathematics Fudan Univerisity Zhihao Fang Department of Architecture Tongji Univerisity ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Ξχϝإը૾ੜ੒ɽ"$("/Λ༻͍ͯɼ൅ܕ΍ϝΨω ͳͲͷಛ௃ΛදͤΔɽ ΑΓߴղ૾౓Խɽ જࡏม਺Λม͑Δ͜ͱͰࣗࡏʹը૾ੜ੒Ͱ͖Δɽ (FOFSBUPSʹ%FDPOWPMVUJPOͷ୅ΘΓʹ1JYFM 4IVGGMFSΛ࢖͍ɼ433FT/FU MJLFͷϞσϧʹͨ͠ɽ ໨తؔ਺ʹϖφϧςΟ߲ΛՃ͑Δ%3"("/Λ༻͍ͨɽ 8FC%//ͰɼXFC্Ͱߴ଎ʹը૾ੜ੒͕Ͱ͖Δɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ରԠ͢Δϥϕϧͷը૾͕ੜ੒Ͱ͖͔ͨ໨ࢹͰ֬ೝͨ͠ɽ '*%TDPSFΛൺֱͨ͠ɽ ϥϯμϜϊΠζ෦෼͕඼࣭ʹେ͖͘࡞༻͢Δɽϥϕϧ ͕σʔληοτʹۉ౳ʹ෼ࢄ͞Ε͍ͯͳ͍ͨΊɼϥϕ ϧͷ૊Έ߹ΘͤʹΑͬͯ͸ྑ޷ͳը૾͕ಘΒΕͳ͍ɽ 130(3&44*7&(308*/(0'("/4'03*.1307&% 26"-*5: 45"#*-*5: "/%7"3*"5*0/ *$-3  େીࠜ޺޾  ਓؒίʔε  
  4. PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

    - ICLR2018 Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ௿ղ૾౓͔ΒͩΜͩΜߴղ૾౓ը૾Λ࡞͍ͬͯ͘ख๏ Ͱը૾ΛQYͰੜ੒ɽ ֶशʹࠇຐज़తͳ͜ͱΛ͠ͳͯ͘΋ൺֱత҆ఆֶͯ͠ शͰ͖ɺ׌ͭଟ༷ੑΛ͍࣋ͬͯΔ ੜ੒ͨ͠ը૾͕ຊ෺ͱݟ෼͚͕͔ͭͳ͍΄Ͳ៉ྷ QYQYʜͱஈ֊తʹੜ੒ͨ͠ɽ σʔληοτͷਖ਼نԽΛͨ͠ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ *ODFQUJPOTDPSFͰΛ௒͑ͨɽʢࣝผ͞ΕΔϥϕ ϧͷόϦΤʔγϣϯ͕๛෋Ͱ͋Δ΄ͲείΞ͕ߴ͘ͳ ΔΑ͏ʹઃܭ͞ΕͨείΞʣ ֶश͕࣌ؒ௕͍ɽ ·ͩඍࡉͳͱ͜Ζʹվળͷ༨஍͕͋Δɽ 1SPHSFTTJWF/FVSBM/FUXPSLTGPS*NBHF$MBTTJGJDBUJPO ;IBOHFUBM 'VMMCPEZ)JHISFTPMVUJPO"OJNF(FOFSBUJPOXJUI 1SPHSFTTJWF4USVDUVSFDPOEJUJPOBM(FOFSBUJWF "EWFSTBSJBM/FUXPSLT  େીࠜ޺޾  ਓؒίʔε  
  5. Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks

    – DeNA Blog Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ QYͷΞχϝը૾ͱϙʔζͷϞʔγϣϯ͔Βɼಈ͖ ͷ͋ΔΞχϝը૾Λੜ੒ɽ إ͚ͩͰͳ͘શ਎ը૾Λੜ੒ɽ ੜ੒ը૾ʹϞʔγϣϯ͕෇͚ΒΕΔɽ Ϟʔγϣϯը૾΋ಉ࣌ʹஈ֊తʹֶशɽ 0QFOQPTFͰϙʔζͷLFZQPJOUΛ఺ੜ੒ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ιʔεը૾Λλʔήοτϙʔζͷߏ଄Λ༗͢Δը૾ʹ ม׵͢Δ1(͓Αͼ%1(ͳͲͷख๏ͱൺ΂ͯಉఔ౓ ʹม׵Ͱ͖ͨɽ কདྷσʔληοτΛ࡞ΔΒ͍͠ɽ 1PTF(VJEFE1FSTPO*NBHF(FOFSBUJPO 1( <.B B> BOE%JTFOUBOHMFE1FSTPO*NBHF(FOFSBUJPO %1(  େીࠜ޺޾  ਓؒίʔε  
  6. 3FDPHOJUJPOPG4IBQFTCZ&EJUJOH4IPDL(SBQIT 5IPNBT#4FCBTUJBO 1IJMJQ/,MFJO #FOKBNJO#,JNJB ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱ൑அ͔ͨ͠ ೋ࣍ݩը૾͔Βࠎ૊ΈΛੜ੒͠ɺࡾ࣍ݩతͳਤܗ ͷมܗΛ͓͜ͳͬͯ΋ಉҰͷը૾Ͱ͋Δ͜ͱΛೝ ࣝ͢Δ͜ͱ͕Ͱ͖Δٕज़ɻ ઌߦݚڀͱͷൺֱ

    ࠎ૊Έͷੜ੒ʹؔͯ͠ͷٕज़͸͢Ͱʹଘࡏ͕ͨ͠ɺ ैདྷͷํ๏Ͱ͸ࡾ࣍ݩతͳมܗΛߦͳͬͨޙʹಉ ҰੑΛ֬ೝͰ͖Δํ๏ཱ͕֬͞Ε͍ͯͳ͔ͬͨɻ ٕज़΍ख๏ͷΩϞ  ࡾ࣍ݩతͳมܗΛߦͳͬͯ΋ɺࠎ૊Έͷτϙ ϩδΛେ͖͘มԽͤ͞ͳ͍Α͏ʹ͢Δ͜ͱɻ  τϙϩδͷมܗΛߦ͏ࡍͷมܗۭؒΛɺͳΔ ΂͘௿͘͠ɺৗʹಉ࣍͡ݩͰऔΓѻ͏͜ͱɻ  Մೳͳશͯͷมܗ͔Βɺ࠷దͳτϙϩδͷΈ Λબ୒͢ΔΞϧΰϦζϜΛ࣮૷͢Δ͜ͱ ࣅͨΑ͏ͳೋ࣍ݩը૾Λࡾ࣍ݩతʹมܗͨ͠ྨࣅ ը૾఺ʹର͠ಉ༷ͷख๏Λ༻͍ɺۃΊͯۙࣅ ͨ͠ࠎ૊Έτϙϩδ͕ಘΒΕΔ͜ͱΛௐ΂ͨɻ ٞ࿦͸͋Δ͔ ͜ͷ࿦จͰఏࣔ͞Ε͍ͯΔٕज़͸ը૾ೝࣝͨ͠෺ ମͷಉҰੑΛΑΓߴ͍ϨϕϧͰ൑அ͢Δ͜ͱ͕Ͱ ͖Δ͜ͱΛ͍ࣔࠦͯ͠Δɻ ͔͠͠ͳ͕Βɺো֐෺ͳͲͷӨڹɺ࣮ࡍͷࡾ࣍ݩ ը૾Ͱ͸มܗۭؒͷ࣍ݩ਺͕େ͖͗͢ΔͨΊॲཧ ͕͔͔࣌ؒΔͳͲɺվળ఺͸ଟ͍ɻ ࣍ʹಡΉ΂͖࿦จ 1BUI4JNJMBSJUZ4LFMFUPO(SBQIT.BUDIJOH 9JBOH#BJBOE-POHJO+BO-BUFDLJ .FNCFS *&&&FUD ߴ૔ྱ ਓؒίʔε *$$7
  7. Super-Fon: Mobile Entertainment to Combat PhonologicalDisorders in Children Rui Neves

    Madeira, Patrícia Macedo, So a Reis, João Ferreira ౎ஙྕ༎ ෹ίʔε ͲΜͳ΋ͷ Ի੠ൃୡྖҬʹ͓͚ΔγϦΞεήʔϜ ࣾձ໰୊ͷ ղܾΛओ໨తͱ͢ΔίϯϐϡʔλɾήʔϜ Ͱ͋Δ ʮ4VQFS'POʯͷ঺հ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ༮ࣇͷ࢖༻཰͕૿Ճͨ͠ϞόΠϧٕज़ͰԻ੠ݴޠ ྍ๏ͷ࣏ྍΛ࣮ݱͨ͠ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ NFUBQIPOFUIFSBQZ ϝλݴޠతΞϓϩʔν Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ ηϥϐετͷ஌ࣝΛར༻ d ࡀͷঁੑͷϙϧτΨϧޠͷݴޠྍ๏͕࢜  ɾ࣏ྍͰϞόΠϧσόΠεΛ࢖༻͍ͯ͠Δ͔Ͳ͏͔  ɾԻ੠ݴޠ࣏ྍͷͨΊͷଞͷγϦΞεήʔϜΛ஌ͬ ɹͯΔ͔Ͳ͏͔ Λௐࠪͨ͠ɻ ٞ࿦͸ ΤϯυϢʔβʔͷςετͱௐࠪΛߦ͍ɺ࣮ࡍͷঢ়گͰධՁ ࣍ʹಡΉ΂͖࿦จ͸ .FUBQIPO"NFUBMJOHVJTUJDBQQSPBDIUPUIFUSFBUNFOUPG QIPOPMPHJDBMEJTPSEFSJODIJMESFO$MJOJDBM-JOHVJTUJDT 1IPOFUJDT ACE2017
  8. ઎୼ٗढ़ͳϟυΡΠනݳ A Survey of 5G Network: Architecture and Emerging Technologies

    Authors: A. Gupta, R. K. Jha IEEE Access ਕؔαʖη 201613036_LI ZHENYU ʹΞ͵΍͹ʁ ୊ 5 ੊େʤ5Gʥιϩϧ௪৶໤͹րવͳϤʖδʖ͹གྷٽΝຮͪͤ͹Ͷༀཱིͯ॑གྷ͵ ৿ٗढ़ͶؖͤΖ৆ࡋ͵௒ࠬ݃ՎΝ়ղͤΖ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʁ ৆ࡋ͵௒ࠬͶΓΕɼD2D ͺक͵঱఼ͳ͢ͱɼҲൢద͵ 5G ιϩϧ௪৶໤Ν఑Ҍͤ Ζɽ ٗढ़Ώघ๑͕ΫϠͺʹ͞ʁ D2DɼঘوໝΠέιηϛ΢ϱφɼέϧΤχɼ͕Γ;Ϡό͹΢ϱνʖϋρφ͗ 5G ι ϩϧ௪৶໤͹Ҳ෨Ͳ͍Ζ͞ͳΝࣖ͢ͱ͏Ζɽ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʁ 5G ٗढ़Νݜڂ͢ͱ͏Ζҡ͵Ζࠅ͹ήϩʖϕΏؽؖ͵ʹͲɼࣰࢬ͠Ηͱ͏Ζݜڂϕ ϫζΥέφͶͯ͏ͱ͹৆ࡋ͵௒ࠬ͗؜ΉΗͱ͏Ζɽ
  9. 䚷䚷䚷䚷䚷䚷䚷䚷䛹䜣䛺䜒䛾 䚷䚷䚷䚷䛹䛖䜔䛳䛶᭷ຠ䛰䛸ᐇド䛧䛯䛛 䚷䚷䚷ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜෶䛔 䚷䚷䚷䚷䚷䚷䚷䚷㆟ㄽ䛿䛒䜛 䚷䚷䚷䚷䚷ḟ䛻ㄞ䜐䜉䛝ㄽᩥ䛿 䚷䚷䚷䚷䚷䚷ᢏ⾡䜔ᡭἲ䛾䜻䝰䛿 95䛸$5䝕䝞䜲䝇㛫䛷㐲㝸㠀ゝㄒ䝔䝺䝥䝺䝁䝭䝳䝙䜿䞊䝅䝵䞁䛩 䜛䛸䛝䛻䚸$5䝕䝞䜲䝇䛾ᯟෆ䛻཰䜎䜚䚸ඹ᭷䛧䛶䛔䜛✵㛫䛾᪉ ྥ䛜୍⮴䛩䜛䜘䛖䛻ྥ䛝䜔኱䛝䛥䛾ኚ䜟䜛䜰䝞䝍䞊䜢ᥦ᱌䛧 䛯䚹

    㐲㝸䛷ປാ⪅䜢ᣦ♧䛩䜛䜿䞊䝇䚸㐲㝸䛷㒔ᕷィ⏬䛻ཧຍ䛩䜛 䜿䞊䝇䜢᝿ᐃ䛧䛶䝴䞊䝄䝇䝍䝕䜱䜢⾜䛳䛯䚹 㐲㝸䝔䝺䝥䝺䛿䝆䜵䝇䝏䝱䞊䛻䛣䛰䜟䛳䛶䛔䛯◊✲䛜ከ䛛䛳䛯 䛜䚸䛣䛾◊✲䛿䜰䝞䝍䞊䛻↔Ⅼ䜢ᙜ䛶䛶䛔䜛䛣䛸䚹 䝍䝇䜽䛾㞴䛧䛥䛜పῶ䛥䜜䛯䛾䛷䚸ᥦ᱌ᡭἲ䛿䝍䝇䜽䛾᏶஢᫬ 㛫䜢▷䛟䛩䜛䛣䛸䛻㈉⊩䛧䛯䚹 ௒ᅇᐇ᪋䛧䛯䝍䝇䜽䛿ᑓ㛛▱㆑䜢ᚲせ䛸䛧䛺䛔⡆༢䛺䜒䛾䛷䚸 㞴䛧䛔䝍䝇䜽䛿⾜䛳䛶䛔䛺䛔䚹 ど⥺䜢䝖䝷䝑䜻䞁䜾䛧䛶䚸ὀどⅬ䛻䛚䛡䜛⾲㠃䛾ἲ⥺䝧䜽䝖䝹䛸 䛭䛾༙ᚄෆ䛾㏆ഐⅬ䜢ㄪ䜉䜛䛣䛸䛻䜘䛳䛶⾲㠃䛾䝍䜲䝥䜢ண᝿ 䛧䛯䚹 +RORSRUWDWLRQ 8,67
  10. 䚷䚷䚷䚷䚷䚷䚷䚷䛹䜣䛺䜒䛾 䚷䚷䚷䚷䛹䛖䜔䛳䛶᭷ຠ䛰䛸ᐇド䛧䛯䛛 䚷䚷䚷ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜෶䛔 䚷䚷䚷䚷䚷䚷䚷䚷㆟ㄽ䛿䛒䜛 䚷䚷䚷䚷䚷ḟ䛻ㄞ䜐䜉䛝ㄽᩥ䛿 䚷䚷䚷䚷䚷䚷ᢏ⾡䜔ᡭἲ䛾䜻䝰䛿 䜶䞁䝗䝒䞊䜶䞁䝗䛾ᣑᙇ⌧ᐇ䛾䝔䝺䝥䝺䝅䝇䝔䝮䚹῝ᗘ䜹䝯䝷䜢 ౑⏝䛧䛶䝠䝖䜔ᐙල䛺䛹䜢䝸䜰䝹䝍䜲䝮䛷 +ROR/HQVୖ䛻⏕ᡂ䛩 䜛䚹

    䛔䜝䜣䛺䝅䝘䝸䜸䜢❧䛶䛶 8VHU6WXG\ ᑐ䛸ᑐ1䛷䜰䝥䝸䜿䞊䝅䝵䞁䛾ẚ㍑ 䝸䜰䝹䝍䜲䝮䛷㧗⏬㉁䛺䝔䝺䝥䝺䝅䝇䝔䝮䛿䛺䛛䛳䛯䚹⌧ᐇ✵ 㛫䛾≀య䜢῝ᗘ䜹䝯䝷䜢౑⏝䛧䛶䝔䝺䝥䝺ඛ䛷䝸䜰䝹䝍䜲䝮䛷 ෌ᵓᡂ䛧䛶䛔䜛䛸䛣䜝 ≀య෌ᵓᡂ᫬䛾䛱䜙䛴䛝䜔䝺䜲䝔䞁䝅䛿୙ᛌ 㧗ᛶ⬟䛺3&䛜䚸䝕䝥䝇䜹䝯䝷䚸㏻ಙ䚸෌ᵓᡂ 䛺䛹䛻ᚲせ䛷䝁䝇 䝖䛜㧗䛔䚹 ୙Ẽ࿡䛺㇂䛿㉸䛘䜙䜜䛺䛛䛳䛯 䝸䜰䝹䝍䜲䝮䛷㐲㝸䛸㏻ಙ䛩䜛䛣䛸䚹῝ᗘ䜹䝯䝷䛛䜙≀య䜢෌ᵓ ᡂ䛧䛶+ROR/HQVୖ䛻⾲♧䛩䜛䛸䛣䜝䚹 7KH8QFDQQ\9DOOH\ *HQHUDO3XUSRVH7HOHSUHVHQFHZLWK+HDG:RUQ2SWLFDO 6HH7KURXJK'LVSOD\VDQG3URMHFWRU%DVHG/LJKWLQJ
  11. 䚷䚷䚷䚷䚷䚷䚷䚷䛹䜣䛺䜒䛾 䚷䚷䚷䚷䛹䛖䜔䛳䛶᭷ຠ䛰䛸ᐇド䛧䛯䛛 䚷䚷䚷ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜෶䛔 䚷䚷䚷䚷䚷䚷䚷䚷㆟ㄽ䛿䛒䜛 䚷䚷䚷䚷䚷ḟ䛻ㄞ䜐䜉䛝ㄽᩥ䛿 䚷䚷䚷䚷䚷䚷ᢏ⾡䜔ᡭἲ䛾䜻䝰䛿 䝅䞊䝇䝹䞊+0'䛷ே㛫䝔䝺䝥䝺䚹䝸䜰䝹䝍䜲䝮䛷 '✵㛫䛾᳨ ฟ䛸䝦䝑䝗䝖䝷䝑䜻䞁䜾䛻䜘䛳䛶䜸䜽䝹䞊䝆䝵䞁䜢⪃៖䛧䛯ே㛫 䛾⾲♧䚹

    ᕷ㈍〇ရ䛾⤌䜏ྜ䜟䛫䛷䝝䞊䝗䜴䜵䜰䜢స䛳䛯䛣䛸 '䝔䝺䝥䝺䝊䞁䝇䝅䝇䝔䝮䜢ၟရ໬䛥䜜䛶䛔䜛䝝䞊䝗䛷タィ䛧 䛯䛣䛸䚹୍⯡໬䛧䛯䛣䛸䛷ᥦ᱌ᡭἲ䛜䛥䜎䛦䜎䛺䝔䝺䝥䝺䝊䞁䝇 䝅䝘䝸䜸䜢䝃䝫䞊䝖䛩䜛䛣䛸䛜ྍ⬟䛸䛺䛳䛯䛣䛸 䜻䝛䜽䝖䜔ගᏛᘧ䝰䞊䜻䝱䝥䜔 *38䝬䝅䝬䝅䛾3&䜢౑䛖䛾䛷䝁 䝇䝖䛜㧗䛔 ග㔞䛺䛹䛾ၥ㢟䛷䝔䝺䝥䝺䛧䛶䛝䛯䜒䛾䛜䝔䝺䝥䝺䛧䛶䛝䛯䜔䛴 䛰䛸ศ䛛䛳䛶䛧䜎䛖 ῝ᗘ䝉䞁䝃䛷ᢞᙳᖹ㠃䛾ᙧ≧䜢 ᐃ䛧䛶䜸䜽䝹䞊䝆䝵䞁䜢Ỵ䜑 䛯䚹䜻䝛䜽䝖䜢౑䛳䛶୕ḟඖᙧ≧䜢෌ᵓᡂ䛧䛯䛣䛸䚹 7KHRIILFHRIWKHIXWXUHDXQLILHGDSSURDFKWRLPDJHEDVHG PRGHOLQJDQGVSDWLDOO\LPPHUVLYHGLVSOD\V
  12. 䚷䚷䚷䚷䚷䚷䚷䚷䛹䜣䛺䜒䛾 䚷䚷䚷䚷䛹䛖䜔䛳䛶᭷ຠ䛰䛸ᐇド䛧䛯䛛 䚷䚷䚷ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜෶䛔 䚷䚷䚷䚷䚷䚷䚷䚷㆟ㄽ䛿䛒䜛 䚷䚷䚷䚷䚷ḟ䛻ㄞ䜐䜉䛝ㄽᩥ䛿 䚷䚷䚷䚷䚷䚷ᢏ⾡䜔ᡭἲ䛾䜻䝰䛿 ⏬ീ䛛䜙ఝ䛶䛔䜛㒊ศ䜢ぢ䛴䛡䛶ᑐᛂ௜䛡䜛䜰䝹䝂䝸䝈䝮䚹䝸 䜰䝹䝍䜲䝮䛷䜲䞁䝍䝷䜽䝔䜱䝤䛻䛩䜛䛣䛸䜢㐩ᡂ䛧䛯䚹 ே㛫䜢ᾘ䛧䛯䜚䚸ᘓ≀䜢ษ䜚ྲྀ䛳䛶෌ᵓᡂ䛧䛯䜚䛩䜛䛣䛸䛜䛷䛝 䜛䜘䛖䛺䜰䝥䝸䜿䞊䝅䝵䞁䜢స䛳䛯䚹

    ྠ䛨䜘䛖䛺䜰䝹䝂䝸䝈䝮䛿๓䛛䜙䛒䛳䛯䛜䚸䝸䜰䝹䝍䜲䝮ᛶ䛜 㧗䛟䚸䜲䞁䝍䝷䜽䝔䜱䝤䛻䛷䛝䜛䜘䛖䛺䝺䝧䝹䛷䛿䛺䛛䛳䛯䚹 ィ⟬㔞䛜᪤Ꮡᡭἲ䛸ẚ䜉䛶ᑡ䛺䛔 *38䛸⤌䜏ྜ䜟䛫䜛䛸ື⏬䛻䜒㐺ᛂ䛷䛝䜛䛛䜒䛧䜜䛺䛔 ఝ䛯䜘䛖䛺㢼ᬒ䛜⥆䛔䛶䛔䜛෗┿䛰䛸ୖᡭ䛟෌ᵓᡂฟ᮶䛺䛔䛣 䛸䛜䛒䜛 䝤䝻䝑䜽䝬䝑䝏䞁䜾䛻ᇶ䛵䛔䛯䚸⏬ീ䛸⏬ീ䛾ᑐᛂ௜䜰䝹䝂䝸 䝈䝮䜢ᨵⰋ䛧䚸$11)䛸䛔䛖䜒䛾䜢ᑡ䛺䛔ィ⟬㔞䛷ฟ䛩䛣䛸䛜 ฟ᮶䜛䜘䛖䛻䛧䛯䛣䛸䚹 ,QYHUVHWH[WXUHV\QWKHVLV
  13. 䚷䚷䚷䚷䚷䚷䚷䚷䛹䜣䛺䜒䛾 䚷䚷䚷䚷䛹䛖䜔䛳䛶᭷ຠ䛰䛸ᐇド䛧䛯䛛 䚷䚷䚷ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜෶䛔 䚷䚷䚷䚷䚷䚷䚷䚷㆟ㄽ䛿䛒䜛 䚷䚷䚷䚷䚷ḟ䛻ㄞ䜐䜉䛝ㄽᩥ䛿 䚷䚷䚷䚷䚷䚷ᢏ⾡䜔ᡭἲ䛾䜻䝰䛿 䝔䜽䝇䝏䝱ྜᡂ䜰䝹䝂䝸䝈䝮䛻ᚲせ䛺 '䝕䞊䝍䝃䞁䝥䝸䞁䜾䜢 ㏫䝔䜽䝇䝏䝱ྜᡂ䛻䜘䛳䛶ධᡭ䛩䜛䚹䛣䜜䛻䜘䛳䛶኱䛝䛺⏬ീ 䛛䜙ᑠ䛥䛺⏬ീ䛻ຠ⋡䜘䛟ᅽ⦰䛜ྍ⬟䛻䛺䜛䚹

    ⏬ീ䛾䜽䜸䝸䝔䜱䛸⏬ീ⏕ᡂ䜎䛷䛾ィ⟬㔞䛻䛴䛔䛶ホ౯䜢⾜䛳 䛯䚹 䝔䜽䝇䝏䝱ྜᡂ䜰䝹䝂䝸䝈䝮䛻ᚲせ䛺 '䝕䞊䝍䝃䞁䝥䝸䞁䜾䛻 䛴䛔䛶ຠ⋡ⓗ䛻ධᡭ䛩䜛ᡭἲ䛿↓䛛䛳䛯䚹 䜽䝻䝑䝢䞁䜾䛷䛿ฟ᮶䛺䛔䜘䛖䛺᝟ሗ䛾ಖ⟶䛜䛷䛝䜛 ⤖ᯝ⏬ീ䛿ඃ䜜䛯䝃䜲䝈䜢ᚓ䜛䛣䛸䛜ฟ᮶䜛䚹 䜰䝥䝸䜿䞊䝅䝵䞁䛻⤌䜏㎸䜐䛣䛸䛜ฟ᮶䜛䛛䜒䛧䜜䛺䛔 ⏬ീ䛜෕㛗䛷䛺䛔䛸ṇ☜䛻᚟ඖ䛷䛝䛺䛔ྍ⬟ᛶ䛜䛒䜛䚹 ㏫䝔䜽䝇䝏䝱ྜᡂ䜰䝹䝂䝸䝈䝮䜢᭱㐺໬ၥ㢟䛸䛧䛶ゎ䛝䚸 *38 䜢౑䛳䛶ィ⟬䛧䛯䛸䛣䜝䚹 6HDPFDUYLQJIRUFRQWHQWDZDUHLPDJHUHVL]LQJ
  14. 9LVLRQEDVHG5HDO(VWDWH3ULFH(VWLPDWLRQ 䛹䜣䛺䜒䛾䠛 ㆟ㄽ ඛ⾜◊✲䛸ẚ䜉䛶 ື⏬䜔ᡭἲ䛾䜻䝰 ḟ䛻ㄞ䜐䜉䛝ㄽᩥ ᭷ຠ䛾☜ㄆ ್௜䛡䛧䛯䛬䟿 㒊ᒇ䛾⏬ീ䜢✺䛳㎸䜐䛸್௜䛡䛧䛶䛟 䜜䜛

    ORVV䛜䝥䝻䛜ᰝᐃ䛧䛯್ẁ ᩍᖌ䛒䜚Ꮫ⩦ ್௜䛡䛰䛡䜔䜛䛴䜒䜚䛜䛴䛔䛷䛻䛭䛾 ᐙ䛜䛹䜜䛰䛡㇦⳹䛺䛾䛛䜟䛛䜛䜘䛖 䛻䛺䛳䛯
  15. /HDUQLQJWR'HEOXU,PDJHVZLWK([HPSODUV ,(((75$16$&7,216213$77(51$1$/<6,6$1'0$&+,1(,17(//,*(1&(䠄DU[LYSUHSULQW -LQVKDQ3DQ䌫:HQTL5HQ䌫=KH+X䌫DQG0LQJ+VXDQ<DQJ 䛹䜣䛺䜒䛾䠛 ㆟ㄽ ඛ⾜◊✲䛸ẚ䜉䛶 ື⏬䜔ᡭἲ䛾䜻䝰 ḟ䛻ㄞ䜐䜉䛝ㄽᩥ ᭷ຠ䛾☜ㄆ ヨ䛧䛯

    EOXU䜢䜒䛹䛩 &11䛰䛡䛷䛺䛟䚸䜶䝑䝆䛾ఝ㏻䛳䛯䝤 䝷䞊䛾䛛䛛䛳䛶䛔䛺䛔 H[DPSOHLPDJH 䜢ධ䜜䛶䜏䛯 ᩍᖌ䛒䜚Ꮫ⩦ 䜶䝑䝆䜒ධຊ䛩䜛 ඲య䛻䝤䝷䞊䛧䛶䜛䛾䛷䜒䛺䛡䜜䜀 &11䛸ᑐ䛧䛶⢭ᗘ䛜ኚ䜟䜙䛺䛔䛧 &11䛾䛜᪩䛔䚸඲య䝤䝷䞊䛺䜙 H[DPSOH䚷せ䜛
  16. WatchSense: On- and Above-Skin Input Sensing through a Wearable Depth

    Sensor &+,d Srinath Sridhar1, Anders Markussen2, Antti Oulasvirta3, Christian Theobalt1, Sebastian Boring2 ʹΞ͵΍͹ʃ ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ٗढ़Ώघ๑͹ΫϠͺʹ͞ʃ ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ٠࿨ͺ͍Ζʃ ࣏Ͷಣ΋΄͘࿨ชͺʃ ५ঐشॺक़ज़ॵॳ਱ऐभোৡু১؛ Depth७থ१॑৷ःؚ੐ऋুभൖषඡोॊऒधؚ૬রदभ োৡؚ఺ल੐भ௙શ॑૭ચपघॊ؛ జਟু১म੐ऋুभൖ॑ඡोॊऒधؚ૬রदোৡघॊऒ ध॑৊ৎपੳ௙दऌऩः؛ऽञؚनभ੐दඡोथःॊऊ ॑௙શदऌऩः؛ Depth७থ१॑ॱॵॳએपৌखؚ࿿ीपਝ઼घॊऒध؛ ऽञؚRandomForest॑৷ःथ2஺మद੐॑௙શघॊऒ ध؛ ଺ୡ঻ৰୡपथؚॱॵॳਜ਼઼਄੭भਫનऔؚॱॵॳउे ल঍ংشभੳ௙ಖ২॑௬੼खؚ੔ষଢ଼஢धૻຎघॊऒध दથ஍ਙ॑ਫ਼઒खञ؛ ਠৎਡदDepth७থ१॑५ঐشॺक़ज़ॵॳपඇी੢िऒ धऋदऌऩः؛য୷ख੐ध஡੐खऊ१এشॺदऌथःऩ ः؛ OmniTouch 201713110 ᱎઢၲᆓ #1 (য৑॥ش५)
  17. SkinTrack: Using the Body as an Electrical Waveguide for Continuous

    Finger Tracking on the Skin &+,b ५ঐشॺक़ज़ॵॳ਱ऐभোৡু১؛५ ঐشॺक़ज़ॵॳप਄ॉહऐैोञਗ਼ாऊ ैৈఢణਯभઐ૴ਦಀ॑৅खؚॱॵॳघ ॊਜ਼઼पૢगथ૗৲घॊਦಀभਜ਼ৼ୷॑ ੦पॱॵॳऔोञৃਚ્॑৒घॊ؛ Yang Zhang, Junhan Zhou, Gierad Laput, Chris Harrison 201713110 ᱎઢၲᆓ #1 (য৑॥ش५)
  18. uTrack: 3D Input Using Two Magnetic Sensors 8,67d क़ख़॔ছঈঝഈଜ਱ऐभোৡু১दँॊ؛ ჌ৃ७থ३থॢपेढथؚ஡੐धजभ౎भ

    ੐॑3Dোৡ३५ॸ঒प૗इॊ؛჌ৃঋॡॺ ঝऊै჌લभx,y,zਜ਼઼धກभ্਱॑ੑ઴घ ॊ؛ঘش२५ॱॹॕपेढथऔऽकऽऩএ ॖথॸॕথॢॱ५ॡप஍ટ৓पઞ৷दऌॊ ऒधऋંऔोञ؛ Ke-Yu Chen, Kent Lyons, Sean White, Shwetak Patel 201713110 ᱎઢၲᆓ #1 (য৑॥ش५)
  19. iSkin: Stretchable On-Body Touch Sensors for Mobile Computing &+,d ମ৬भ঱दॱॵॳোৡ॑ষअञीभؚৗख

    ःျपणऐॊ७থ१दँॊ؛ে৬ి়ਙभ ँॊ੟৬पेढथ੿ैोؚฑໞदಇयघऒ धऋदऌॊ؛੐ؚฏؚປऩनभ஄भୀअ ஘رऩৃਚपँढञ஄द੿ଲदऌॊ؛३থ ॢঝॱॵॳؚঐঝॳॱॵॳपৌૢखथःॊ؛ Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, -ÝUJHQSteimle 201713110 ᱎઢၲᆓ #1 (য৑॥ش५)
  20. ShareVR: Enabling Co-Located Experiences for Virtual Reality between HMD and

    Non-HMD Users Jan Gugenheimer, Evgeny Stemasov, Julian Frommel, Enrico Rukzio 
 ).%ண༻ऀະண༻ऀ͕ಉۭؒ͡Λڞ༗Ͱ͖Δ73؀ڥ ಉ͡෦԰ʹ͍ͳ͕Β΋ɺ ະ ண༻ऀͰಉ͡ίϯςϯπ಺ ͷҟͳͬͨ73ମݧ͕Ͱ͖Δ࠷ॳͷγεςϜͰ͋Δ͜ͱ ηϯαʔ͕൓Ԡ͢ΔΤϦΞͷচʹ̎୆ͷϓϩδΣΫλʔ Λ࢖ͬͯ73ۭؒͷচΛ౤Ө͢Δ͜ͱʹΑͬͯະண༻ऀ ͕ۭؒͷڥքΛೝࣝͰ͖ΔΑ͏ʹͨ͠ 4IBSF73 HBNFQBE ).% /PO).% HBNF̎छ ͷ̔௨ΓͰ 6TFS4UVEZ (BNF&YQFSJFODF2VFTUJPOOBJSF  ݁ՌΛ౷ܭௐࠪ ).%ͷ਺Λ૿΍͢ ະண༻ऀଆͷۭؒσβΠϯΛ΋ͬͱߟ͑Δ Cheng et al 2015 201813560 ࠨํஐथ #1 (෹ίʔε) ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ $)*
  21. Guessing Objects in Context Karan Sharma , Arun CS Kumar,

    Suchendra Bhandarkar ୯ޠຒΊࠐΈϕΫτϧΛ༻͍ͯબ୒͞Εͨ14छͷ ը૾ϥϕϧΛֶशͨ͠Ϟσϧ͔Βɺ80छͷϥϕϦ ϯά໰୊Λղ͍ͨɻ ͲΜͳ΋ͷ? ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝? ઌߦྫͷθϩγϣοτֶश͸ෳࡶͰεέʔ ϧ͠ʹ͍͕͘ɺͦͷ఺͕վળ͞Ε͍ͯΔɻ ٕज़΍ख๏ͷΩϞ͸Ͳ͜? ୯ޠຒΊࠐΈϕΫτϧ͔Βจ຺Λݟͯಉ࣌ ʹൃੜ͠΍͍͢ϥϕϧΛਪଌ͢Δ఺ɻ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠? microsoftͷCOCOσʔλϕʔεͷϥϕϦϯάΛߦͬͨɻ ٞ࿦͸͋Δ? 80छશͯͷϥϕϧʹֶ͍ͭͯशͨ͠ϞσϧΑΓ͸ਫ਼౓͕௿͍ ͕ɺ͘͝গ਺ͷݕग़ث͔ΒΠϝʔδ಺ͷΦϒδΣΫτΛਪଌՄ ೳͰ͋Δ͜ͱΛࣔͨ͠ɻ ࣍ʹಡΉ΂͖࿦จ͸? ಉ͘͡word2vecΛ෼ྨ໰୊ʹར༻͍ͯ͠Δ Moe Matsuki, and Sozo Inoue, 2016 Recognizing unknown activities using semantic word vectors and twitter timestamps 201813566 ஥ଜ༐അ #1(෹ίʔε) SIGGRAPH '16
  22. ïü²Ý]’…wvĝÁ šA† /    þĈçß  &&0*-*$7"-0,&5*%&%&&0&*.'/2$&-&.4&"2.*.(/')83*$3"3&% )"2"$4&2+*,,3

    ©¥    āÕ !5&*.&.(  *&4&2##&&,  &2(&8&6*.&  *$)*&,6". %&"..&  .*6&23*48/'",*'/2.*"&2+&,&8   .*6&23*48/'2*4*3)/,5-#*" ĒtXæ æ«}A    þĈçß   =^t_ja? Vaãaä¶ġĶ¡Í~„‘`ÈrU[  “…™a“A~–sx
  23. ïü²Ý]’…wvĝÁ šA† /    þĈçß  —{„wŒ`Ĥ£QUo~„‘< 

    =ïƽ´]Ěe[^OKSPFJ  “…™`;lnÓó\ÁÔą_ĎLsZNoO]K\Lo< CĻ>ŽA™ažÿ`lY[zƒ{aÇQKĤro< ùãa_F]Oq\ZfT M;ČD  =²ÝkØĪaz“ Opf\a²Ýb{agRJIJHmp[F_JYWa\ ÓĎíëQpW“…™aĎLbĞÓóXYWK; ˜‹uš]_o“A~–a…AsIJHoO]\lnÓó\ìÈêaE oĎLsËnÜR[Fo< ·úą`b ‡•A—™ˆƒ†œA{ Cæ«aĕa~„‘s ĠÉÁRWjaD a“…™\ ôúséÃ< C2&'&2&.$&34"4&*.*4*",*9"4*/.>©Ù`lY[Ćî_…As˜‹ušJ jY[Op_M_Y[RfYWãÈ`;ĢğsÞ­£RW¹\˜‹uš` v{€SoO]K\Lo㤂”ˆ™D ] &"2,84&2-*."4*/.“A~– aĉĀĨ®C“…™KćċRWãÈ_^DsĴF[˜y‰˜A¯ĔsÔö< =^GkY[įÄX]ĘýRW? ġĶĪ÷K~•šA†QpWªµ¢\¬ī“A~–a…AsIJHmpW  “…™KďijaĎËsRWJ^GJ`¤H[; ă¤a{sO_UoJ^ GJ\ĘýRW<WMQt~•šA~–s¸nĦR[Vačºs×YW<  =³ĽbEo? Áäa~„‘X]À]_o“A~–]~•šA~–sЫą`ď­S oĜĵKEoWi;Vadt~„‘KĎˁx|séÃSoĔĺKé Qp[RfG<OOaéÂsēĖ\Lo]ÓİĊKÇfo< fWÔ¿\bàèa{˜ƒagRJ»áR[F_FWi;û°ĭ_èa{˜ ƒ`ZF[bfXrJm_F< =Ñ`ĒheLĽģb? ,/4)$"0
  24. ïü²Ý]’…wvĝÁ šA† /    þĈçß  ÌÅģ¼f]i "3+:"3&%/$/-/4*/.

    {sėGŸĎ\ÆrpoħÆ`¾mpođĂsěHWħƓA~–aí ë< /#534"3+#"3&%/.42/,/,*$*&3'/2)83*$3#"3&%)"2"$4&23 ġĶ~•šA~–¢\az”—{AaéÃĩå/,*$8 aĮKlMrJn fUtsÏñºÍSoØĪa¨ĸ< &.&2",*9&%*0&% ",+*.(/.42/, ħƊ—’A;“A~–x™;z”—{Ěķ;Ilcij@_z™ sÛĢ` ę£RW;ġĶą`~•šA†QpWħÆĎËaéÃðĹaĄ Ò<â±aĵõKx—{„wŒ`ĥÚSoO]K\Lo<  *-5,"4*/./'5-"./4*/."4"53*.()/24B/2*9/./%&,B2&%*$4*6& /.42/, ġĶ~•šA†QpWæ«sÔÊaĎL…A`ĐMO]`lY[;Óó_ ĎLsíëSo“…™ıø}†›A—aĄÒ< 4&2"4*6&2"*.*.(/'8."-*$+*,,3.30*2&%#85-"./"$)*.(&$).*15&3 æ«aľĬ_ÎÒs¦ÖR;ļÙsz”—{AK¸nĦR§òSolG_~ „‘aÔö<  
  25. 䛹䜣䛺䜒䛾䛛 ⣬䛻ᡭ᭩䛝䛷ϮϲϲᩥᏐ䛾୰ᅜㄒ䜢᭩䛝䚸෗┿䜢 ᧜䛳䛶䜴䜵䝤䝃䜲䝖䛻䜰䝑䝥䝻䞊䝗䛩䜛䛸䚸᭩䛔 䛯ே䛾➹㊧䛷ϮϳϱϯϯᩥᏐ䛾୰ᅜㄒ䛾䝣䜷䞁䝖䝷 䜲䝤䝷䝸䛜స䜙䜜䜛 ඛ⾜◊✲䛸ẚ䜉䛶䛹䛣䛜䛩䛤䛔䛛 ୍⯡䛾ே䛷䜒䚸䜟䛪䛛ϭ䠂䛾ᩥᏐ䜢᭩䛟䛰䛡䛷䚸 ⮬ศ䛾➹㊧䛾䝣䜷䞁䝖䝷䜲䝤䝷䝸䜢స䜛䛣䛸䛜䛷 䛝䜛 ᢏ⾡䜔ᡭἲ䛾䜻䝰

    䝇䝖䝻䞊䜽䜢ษ䜚ฟ䛩 ᡭ᭩䛝䛾ᩥᏐ䛸ཧ⪃䛾ᩥᏐ䛾䝇䝖䝻䞊䜽䛾ᙧ 䜔䝺䜲䜰䜴䝖䛾ᕪ䜢Ꮫ⩦ dŚĞŽŚĞƌĞŶƚWŽŝŶƚƌŝĨƚ;WͿ΀DLJƌŽŶĞŶŬŽ ĂŶĚ^ŽŶŐϮϬϭϬ΁ĂůŐŽƌŝƚŚŵ䜢౑䛳䛯䛣䛸 䛹䛖䜔䛳䛶᭷ຠ䛰䛸᳨ド䛧䛯䛛 ᡭ᭩䛝䛾ᩥᏐ䛛స䜙䜜䛯ᩥᏐ䛛䜢ぢศ䛡䛶 䜒䜙䛖䝔䝇䝖䜢⾜䛳䛯䛸䛣䜝䚸䜋䜌ぢศ䛡䛜䛴 䛛䛺䛔䛣䛸䛜ศ䛛䛳䛯 ḟ䛻ㄞ䜐䜉䛝ㄽᩥ DLJƌŽŶĞŶŬŽĂŶĚ^ŽŶŐϮϬϭϬ ϮϬϭϱϭϭϱϲϭ ᯇ㔝⍞⏕ ௖䝁䞊䝇 ㆟ㄽ䛿䛒䜛䛛 ᡭ᭩䛝䛾ᩥᏐ䛛స䜙䜜䛯ᩥᏐ䛛༊ู䛜䛴䛛 䛺䛔䚸㧗䛔䜽䜸䝸䝔䜱䞊䛾ᡭ᭩䛝䝣䜷䞁䝖䝷䜲 䝤䝷䝸䜢స䜛䛣䛸䛜䛷䛝䜛
  26. Sunny Day Display: Mid-air Image Formed by Solar Light Naoya

    Koizumi ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ࿦จ͸ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ଠཅޫΛऔΓೖΕۭͯதʹ૾Λ݁ͿࢼΈʹ߹ Θͤͨɺ԰֎Ͱ࢖༻͢ΔͨΊʹԕํͷޫΛऔ Γআ͘͜ͱ͕Ͱ͖Δ࣮༻తͳઃܭͷఏҊ σΟεϓϨΠͷόοΫϥΠτͷ୅ΘΓͱ ͯ͠ଠཅޫΛ༻͍ۭͨதσΟεϓϨΠɺ ଠཅޫͷΑ͏ͳपғޫΛ༻͍ۭͯத૾Λ ܗ੒͢ΔͨΊͷޫֶతͳઃܭͷҊ ҉͍ͱ͜ΖͰ͸࢖༻Ͱ͖ͳ͍ɺղܾ๏ͱͯ͠ैདྷͷ ҰൠతͳσΟεϓϨΠΛޫݯͱͯ͠࢖༻ɺࠓޙ͸प ลޫͷর౓ʹ߹Θͤͯิॿޫͷ੍ޚٕज़Λࠓޙ։ൃ "*1ɺಁ໌-$%ɺ͓Αͼ͍͔ͭ͘ͷσΟϑϡʔβΛ ༻͍࣮ͯݧϞσϧΛࢼ࡞ɺً౓ΛධՁ "*ϓϨʔτʹೖͬͨޫΛःṭࡐྉͰதۭը ૾ͷࡱ૾ํ޲Ҏ֎ͷ"*1Λःṭͨ͠ɻ 0DIJBJ : ,VNBHBJ , )PTIJ 5 3FLJNPUP + )BTFHBXB 4 BOE)BZBTBLJ :'BJSZ -JHIUTJO'FNUPTFDPOET"FSJBMBOE7PMVNFUSJD(SBQIJDT3FOEFSFECZ'PDVTFE 'FNUPTFDPOE-BTFS$PNCJOFEXJUI$PNQVUBUJPOBM)PMPHSBQIJD'JFMET"$.5SBOT (SBQI  "SUJDMF  QBHFT 1MBTFODJB %. +PZDF & BOE4VCSBNBOJBO 4.JT5BCMFSFBDIUISPVHIQFSTPOBM TDSFFOTGPSUBCMFUPQT*O1SPD$)* "$.1SFTT   5PLVEB : /PSBTJLJO ." 4VCSBNBOJBO 4BOE1MBTFODJB %..JTU'PSN "EBQUJWF4IBQF$IBOHJOH'PH4DSFFOT*O1SPD$)* "$.1SFTT    ,PJ[VNJ /BOE/BFNVSB51BTTJWF.JEBJS%JTQMBZ*O1SPD"$&    "SUJDMF ),JN 4/BHBP 4.BFLBXB BOE5/BFNVSB .3TJPO$BTF"(MBTTFTGSFF .JYFE3FBMJUZ4IPXDBTFGPS4VSSPVOEJOH.VMUJQMF7JFXFST*5&5SBOTPO.FEJB 5FDIOPMPHZBOE"QQMJDBUJPOT      Ճ౻༏Ұʢਓؒίʔεʣ *44
  27. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ࿦จ͸ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ճ౻༏Ұʢਓؒίʔεʣ Fairy Lights in

    Femtoseconds: Aerial and Volumetric Graphics Rendered by Focused Femtosecond Laser Combined with Computational Holographic Fields Yoichi Ochiai1* Kota Kumagai2* Takayuki Hoshi3 Jun Rekimoto4 Satoshi Hasegawa2 Yoshio Hayasaki2 1University of Tsukuba 2Utsunomiya University 3Nagoya Institute of Technology 4The University of Tokyo ϑΣϜτඵϨʔβʔʹΑΔۭத͓Αͼ༰ ੵάϥϑΟοΫͷϨϯμϦϯάख๏ ߴً౓Ϩʔβʔ͸෺ཧతͳ෺࣭Λྭىͯ͠ ೚ҙͷ%ҐஔͰൃޫͤ͞Δ͜ͱ͕Մೳɺ φϊඵϨʔβʔʹΑΔϓϥζϚΑΓ΋҆શ ݱࡏͷঢ়ଶͰ͸αΠζ͕খ͗͢͞Δ ΤωϧΪʔରΠΦϯԽϓϥζϚً౓ɺً౓ରύϧεϐʔ Ϋɺۭؒ૾ͷͨΊͷಉ࣌ʹΞυϨε͞ΕͨϘΫηϧɺ ͓Αͼൽෘଛইʹ͓͚ΔςετΛߦ͍σʔλΛ࠾औ :04)*%" 5 ,".630 4 .*/".*;"8" , /** ) "/%5"$)*  43FQSPE'VMMQBSBMMBYEEJTQMBZVTJOHSFUSPSFqFDUJWF QSPKFDUJPOUFDIOPMPHZ*O"$.4*((3"1)&NFSHJOH 5FDIOPMPHJFT "$. /FX:PSL /: 64" 4*((3"1)b   ਤʹࣔ͞ΕΔɺϑΣϜτඵϨʔβʔΛΨϧ όϊϛϥʔͱϨϯζΛ༻͍ͯେؾதʹ݁૾ ͢ΔγεςϜ
  28. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ࿦จ͸ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ճ౻༏Ұʢਓؒίʔεʣ Passive Mid-air Display

    Naoya Koizumi, Takeshi Naemura ջதి౮ͰۭؒΛরΒ͢͜ͱʹ ΑΔೳಈతͳۭதσΟεϓϨΠ ࣮ࡍͷ؀ڥͰϢʔβʔͷߦಈΛͨ͠ ӄӨදݱɺ"*1ࣗମ·ͨ͸൓ࣹܕσΟεϓϨΠද ໘্ͷڸ໘൓ࣹʹΑͬͯҾ͖ى͜͞ΕΔάϨΞ ΤϯλʔςΠϝϯτίϯϐϡʔςΟϯάγ εςϜͷͨΊͷ૬ޓ࡞༻Λ୳ࡧ͢Δ͜ͱΛ Մೳʹ͢Δর໌ͷෆҰகͷσβΠϯ ಛผͳ΢ΣΞϥϒϧσόΠεͳ͠ͰମݧՄೳͳΤ ϯλςΠϯϝϯτίϯϐϡʔςΟϯάγεςϜ༻ ͷ৽͍͠ޫֶઃܭ )BOZVPPM,JN *TTFJ5BLBIBTIJ )JSPLJ:BNBNPUP 4BUPTIJ .BFLBXB BOE5BLFTIJ/BFNVSB."3*0.JEBJS "VHNFOUFE3FBMJUZ*OUFSBDUJPOXJUI0CKFDUT&OUFSUBJONFOU $PNQVUJOH    "$&
  29. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ࿦จ͸ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ճ౻༏Ұʢਓؒίʔεʣ MistForm: Adaptive Shape

    Changing Fog Screens Yutaka Tokuda, Mohd Adili Norasikin, Sriram Subramanian, Diego Martinez Plasencia School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom dਓରԠͷܗঢ়มԽՄೳͳ ϑΥάσΟεϓϨΠ ը૾ͷ࿪Έ΍ಈతۂ໘্ͷෆۉҰͳ ً౓ͳͲͷݻ༗ͷ՝୊Λ෼ੳ Ԝঢ়ͷσΟεϓϨΠͰ͸ɺ୯ҰͷϢʔβʹͱͬ ͯշదͳൣғͰίϯςϯπΛҡ࣋͢Δ͜ͱ͕ Ͱ͖ɺ·ͨತঢ়ͷܗঢ়Ͱ͸ɺݸʑͷλεΫͰ ෳ਺ͷϢʔβΛαϙʔτ͢Δ͜ͱ͕Ͱ͖Δ $)* 0MJWFS#JNCFS$PNCJOJOH0QUJDBM)PMPHSBNT XJUI*OUFSBDUJWF$PNQVUFS(SBQIJDT$PNQVUFS   r%0*IUUQEPJPSH.$  ߴີ౓ͷΦϒδΣΫτ͸ɺଞͷϢʔβʔ ͷՄࢹੑΛࠞཚͤ͞ΔՄೳੑ͕͋Δ ࡞੒͞ΕͨσΟεϓϨΠγΣΠϓͷਪఆͱޫֶ తΞʔνϑΝΫτΛআڈ͢Δ౤ӨΞϧΰϦζϜ
  30. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ࿦จ͸ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ճ౻༏Ұʢਓؒίʔεʣ MisTable: Reach-through Personal

    Screens for Tabletops Diego Martinez Plasencia, Edward Joyce, Sriram Subramanian Department of Computer Science, University of Bristol, UK ୎্ΛϦʔνεϧʔ͢Δݸਓ༻σΟεϓ ϨΠʹΑΔɺ৽͍͠୎্γεςϜ ݸਓ༻σΟεϓϨΠ͸ɺ֤Ϣʔβͱ୎্ද໘ ͱͷؒʹఏࣔ͞Εɺؔ࿈͢ΔίϯςϯπΛϢʔ βʹදࣔ͢ΔͨΊͷදࣔ໘Λఏڙ͢Δ Ϣʔβʔͱ୎্໘ͷؒʹγʔεϧʔ͓Αͼ Ϧʔνεϧʔදࣔ໘Λ࡞੒ -FF + "0MXBM )*TIJJ BOE$#PVMBOHFS  4QBDF5PQJOUFHSBUJOH%BOETQBUJBM%JOUFSBDUJPOT JOBTFFUISPVHIEFTLUPQFOWJSPONFOU JO"$.$)*  "$.1SFTT1BSJT 'SBODFQ ଞͷϢʔβʔ͕ࣗ෼ͷը໘Λݟ͍ͯΔ͜ ͱΛޮՌతʹ൑அͰ͖ͳ͍ ଌ৭ܭΛ࢖༻ͯ͠ϑΥάσΟεϓϨΠͷً౓ϓ ϩϑΝΠϧΛଌఆ͠ɺً౓ิঈΞϧΰϦζϜΛ ࡞੒ͯ͠ۉҰͳً౓ϓϩϑΝΠϧΛ࡞੒ $)*
  31. MRsionCase: A Glasses-free Mixed Reality Showcase for Surrounding Multiple Viewers

    Hanyuool Kim †, Shun Nagao †, Satoshi Maekawa (member)††, Takeshi Naemura (member)† ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ࿦จ͸ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ σόΠεΛհ͞ͳ͍.3ͷγϣʔέʔεͷఏҊ ).%౳Λ௨ͣ͞೑؟Ͱ.3γϣʔέʔεମݧ͕ Մೳɺ.3TJPO$BTFͷରশతͳσβΠϯʹΑΓɺ ͋ΒΏΔਫฏํ޲͔Βలࣔ͢Δ͜ͱ͕Ͱ͖Δ ଟ͘ͷࢹௌऀ͕ݟΔͨΊʹ͸ΑΓ޿͍ࢹ໺͕֯ඞཁ ࣮ࡍͷలࣔͰͷϢʔβʔ΁ͷΞϯ έʔτʹΑΔධՁΛߦͬͨ  :,PMTUFFBOE8WBO&DLl5IFBVHNFOUFE7BO(PHI`T"VHNFOUFE SFBMJUZFYQFSJFODFTGPSNVTFVNWJTJUPSTz *&&&*OUFSOBUJPOBM4ZNQPTJVN PO.JYFEBOE"VHNFOUFE3FBMJUZ"SUT .FEJB BOE)VNBOJUJFT  QQr  ϋʔϑϛϥʔΛ༻͍ͨԾ૝Πϝʔδͱ࣮Πϝʔ δͷ྆ํΛܗ੒Ͱ͖ΔΠϝʔδϯάγεςϜ Ճ౻༏Ұʢਓؒίʔεʣ
  32.          

             $"-"112=%.*"-). "32/.".$(1)23/0(%1%",%8   1#5&%:8 4-".%1&/1-".#%"04341% 4,3)5)%61%#/.2314#3)/.LG?H 4,3)%.$"1).' ¢]<_    t ¥¨ƒ !)"'$ Ÿx—•ŠK}ŽZ<gqJO €SE:v‘™in<ŽT£~ CHrsaps\DRFPL¤©G 30.- 7% y’M\ojVc[_h<fWXU Nin<ŽL‰Akqbin<Y jX[eT“Œ–DR Ÿx—•ŠK}ŽZ<gqJO €SE:“ˆ˜M`je^mf<T ‚”>žLrsaps\I@R ,2$*+ }ŽZ<gq !$(#9/ 64 ¦;K¡†BM“w{ldqM‹z˜ Žœ|uLQR "76%,,)3".!Tš„CF .3%,)  + 9I›…DR ).$/62 J)1%#3T‡§
  33. ͲΜͳ΋ͷ Ͳ͏΍ͬͯ༗༻ੑΛݕূͨ͠ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ ҧ͍ ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δ ࣍ʹಡΉ΂͖࿦จ .JUBOJBOE4V[VLJ [JQJU

    %ͷ௚ઢ͕%ͷද໘্Ͱ׈Β͔ͰۉҰͳΒͤΜʹ Ϛοϐϯά͢ΔͨΊʹɺ࿪ΈΛ࠷খʹ͢Δͱ͜Ζ ϦϘϯͷ෯͕ࡉ͚Ε͹ࡉ͍΄Ͳɺਖ਼֬Ͱ͸͋Δ͕ ௕͘ͳͬͯ͠·͏ .JUBOJBOE4V[VLJͱͷൺֱ ύʔπͷ୯७ੑͱࢦࣔͷඞཁͷͳ͔͞Β༗༻ ҰͭͷϦϘϯܗঢ়ͰɺδούʔΛด͡Δ͚ͩͰ %ܗঢ়Λߏ੒Ͱ͖Δ .JUBOJBOE4V[VLJΑΓ΋׈Β͔ͰɺϦϘϯ͕͢΂ͯͭͳ͕͍ͬͯΔ ·ͨɺ[JQJUͱ͸ҧͬͯ೚ҙͷ%ܗঢ়ʹదԠͰ͖Δ
  34. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 1SJOUJOH3FqFDUBODF'VODUJPO ൓ࣹޫΛ੍ޚ͢ΔϚεΫʹΑͬͯɼ


    දࣔ͢Δը૾͕֎ޫʹΑΔมԽΛ͢Δɽ
 ϚΠΫϩϛϥʔͷ্ʹҰൠతͳϓϦϯλʔͰ
 ϚεΫΛҹ࡮͢Δ͚ͩͱ͍͏؆୯͞ ୯७ͳനࠇͰ͸Ұ෦͕ϝλϦοΫʹͳͬͯ
 ͠·͏ͨΊɼϋʔϑτʔϯॲཧΛ࢖༻ͨ͠ ඍখߏ଄ʹରͯ͠ͷϨΠτϨʔγϯά
 ࣮ࡍʹϓϩτλΠϓΛ੡࡞
 ࠓͷϓϩτλΠϓͰ͸όΠφϦͷΈ
 ֎ޫʹΑΔมԽ͕؍࡯Մೳͳͷ͸ࢹ఺ͷΈ
 !1 50(`
  35. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 "3FqFDUBODF%JTQMBZ

    ࢹ఺Ҡಈɼ֎෦ޫݯͷมԽʹରԠͯ͠
 දࣔը૾͕มԽ͢ΔσΟεϓϨΠ ɾর౓ηϯαʔ΍τϥοΩϯάΛ༻͍ͳ͍
 ɾQBTTJWFEJTQMBZͷಛ௃ͱͯ͠র໌ͷ
 มԽ΁ͷରԠ͕ૉૣ͍ ɾෳ਺೾௕ʹ͓͍ͯɼ໨తͷ൓ࣹ཰Λಉ࣌ʹ
 ੜ੒͢ΔͨΊͷ࠷దԽܭࢉ ҐஔͷมԽ͢ΔฏߦޫΛ4-.ʹ͋ͯɼ
 ͦΕΛࡱӨͨ͠ ɾ4-.ͷಛੑ্ɼ֯౓෼ղೳ͕௿͍
 ɾදࣔՄೳͳը૾αΠζ͕খ͍͞
 ɾ৭ͷදࣔ͸·ͩͰ͖͍ͯͳ͍ !2 50(`
  36. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 )JHIDPOUSBTU$PNQVUBUJPOBM$BVTUJD%FTJHO

    ίʔεςΟΫεͱͦΕΛੜ੒͢Δσβ ΠϯͷͨΊͷ࠷దԽΞϧΰϦζϜ ϋΠίϯτϥετɼΑΓ׈Β͔
 ઌߦݚڀʹൺ΂ɼࢹ֮తʹΑΓෳࡶͳ ίʔεςΟΫεΛੜ੒Մೳ ೖࣹද໘͔ΒͷϨΠτϨʔγϯάΛߦ͍ɼ ޫݯ͔Β໨ඪͷը૾Λੜ੒͢Δͷʹޫͷ෼෍ ΛͲ͏มԽͤ͞Ε͹͍͍ͷ͔ͱ͍͏PQUJDBM USBOTQPSUNBQΛੜ੒͠ܭࢉͨ͠ ࣮ࡍʹΞΫϦϧΛ$/$Ͱ੾࡟ͨ͠΋ͷͰ
 ίʔεςΟΫεΛੜ੒͠ɼࡱӨΛߦͳͬͨ ಺෦൓ࣹͳͲΛߟྀʹೖΕ͍ͯͳ͍
 র໌ͷೖࣹ͕֯ઙ͍ͱ͏·͍͔͘ͳ͍
 ໘ޫݯͩͱDPVTUJDTʹϘέ͕ൃੜ͢Δ !3 50(` 1PJTTPO#BTFE$POUJOVPVT4VSGBDF (FOFSBUJPOGPS(PBM#BTFE$BVTUJDT
  37. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1PJTTPO#BTFE$POUJOVPVT4VSGBDF(FOFSBUJPO

    GPS(PBM#BTFE$BVTUJDT ೚ҙͷίʔεςΟΫεΛੜ੒͢Δಁ໌ ମͷܭࢉख๏ ߴਫ਼ࡉ͔ͭ׈Β͔
 ۶ં໘͕࿈ଓతͳͷͰɼޫͷ෼෍΋ ࿈ଓతʹͳΔɽैདྷ͸཭ࢄత 'JODLIFUBM<>ͷݚڀʹΑͬͯ
 ੜ੒͞ΕΔίʔεςΟΫεͱൺֱͨ͠ ϝογϡ͕٧·ͬͨ࣌ʹͷ࣮૷Ͱ͸
 ௿ίϯτϥετʹͳΔɽ࠶ϝογϡ
 Խͤ͞ΔͱίʔεςΟΫε͕೾ଧͭɽ !4 50(` ೖࣹޫͱεΫϦʔϯʹরࣹ͞ΕΔޫͷ ؔ܎ͱɼͦΕΛੜ੒͢Δܗঢ়ΛϙΞι ϯํఔࣜʁͰղ͍ͨ
  38. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 4IBEPX"SU

    ෳ਺ͷӨֆΛಉ࣌ʹ౤Ө͢ΔͨΊͷ
 ࠷దԽख๏ ೖྗը૾ʹରͯ͠ɼଘࡏ͠ͳ͍%Φϒ
 δΣΫτͷՄೳੑ͕͋Δ͔Βɼগ͠
 มܗ͍ͤͯ͞Δ ೖྗը૾ͷೋ࣍ݩࡾ֯ϝογϡ཭ࢄԽ
 Λ༻͍ͯɼը૾Λ׈Β͔ʹมܗͤͨ͞ ͍͔ͭ͘ͷγϟυ΢ύλʔϯΛ
 ੜ੒͢Δ%ூࠁΛ࡞੒ͨ͠ ɾෳ਺ͷӨΛಉ࣌ʹग़͢ࡍɼͦΕͧΕͷ
 ૊Έ߹Θ͕ͤྑ͘ͳ͍͕࣌͋Δ
 ɾݱࡏͷ࠷దԽ͸ཧ૝తͳ఺ޫݯ͔ฏߦޫͷΈ !5 50(`
  39. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 )JHI#SJHIUOFTT)%31SPKFDUJPO6TJOH%ZOBNJD 'SFFGPSN-FOTJOH

    GSFFGPSNMFOTΛ༻͍ͨ
 ߴً౓ϓϩδΣΫλʔͷߏ଄ ߴً౓ɼߴίϯτϥετ
 4-.ΛGSFFGPSNMFOTͱͯ͠༻͍ͨ࠷ ॳͷྫ Ґ૬มௐͱGSFFGPSNMFOTͷ࠷దԽܭࢉ ϓϩτλΠϓͷ࡞੒Λߦ͍ɼίϯτϥ ετൺɼϐʔΫً౓ͷήΠϯ஋ͳͲΛ ٻΊͨ ϓϩτλΠϓ͸୯৭͕ͩɼϑϧΧϥʔ΋ Մೳ
 4-.ͱಉظͷࡍʹ஗Ԇ͕ൃੜ͢Δ !6 50(`
  40. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 $PNQVUBUJPOBM-JHIU3PVUJOH%1SJOUFE0QUJDBM 'JCFSTGPS4FOTJOHBOE%JTQMBZ

    ޫϑΝΠόʔ͕ຒΊࠐ·ΕͨΦϒδΣΫτ
 ͷ࡞੒ΞϧΰϦζϜ ैདྷͷGBCSJDBUJPOݚڀͰ͸ද໘ͷ൓ ࣹʹ࡞༻͢Δ΋ͷ͔͠ͳ͔ͬͨ ̎ͭͷද໘ ϑΝΠόʔ͕ೖΔ໘ͱग़Δ ໘ Λೖྗͱͯ͠ઃܭ͢ΔࡍʹϑΝΠόʔ ͷۂ཰Λ࠷খʹ͢ΔΞϧΰϦζϜ ਓͷإ΍൒ٿɼ೴ͳͲͷ͍͔ͭ͘ͷΞϓϦ έʔγϣϯΛ࣮૷ͨ͠ ·ͨɼλονηϯγϯάͳͲ΋࣮૷ͨ͠ ɹݱࡏͷ%ϓϦϯτͰ࢖༻Մೳͳࡐ ࣭Ͱ͸ϑΝΠόʔ͔Βͷޫ͕࿙Εͯ ίϯτϥετ͕Լ͕Δ !7 50(`
  41. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 'PDBM4VSGBDF%JTQMBZT

    ᫔᫓ௐ੔໰୊Λղܾ͢ΔͨΊͷ
 ଟয఺σΟεϓϨΠ ैདྷͷ઀؟Ϩϯζͱޫݯͱͯ͠ͷ
 σΟεϓϨΠͷߏ੒Ͱ͸য఺໘͸̍Օॴ ඇઢܗ࠷খೋ৐࠷దԽͱઢܗ࠷খೋ৐๏ Λ༻͍ͯը૾͔Βয఺໘Λݟ͚ͭΔ -$04ϕʔεͷ྆؟).%ʹ૊ΈࠐΜͩ 4-. -$04ͷಛੑ্໎ޫ΍
 ৭ऩ͕ࠩൃੜ͢Δ !8 50(`
  42. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 'MPBUJOHWPMVNFUSJDJNBHFGPSNBUJPOVTJOHB

    EJIFESBMDPSOFSSFqFDUPSBSSBZEFWJDF ίʔφʔϦϑϨΫλΞϨΠΛ༻͍ͨ
 ϘϦϡʔϝτϦοΫσΟεϓϨΠ Ԝ໘ϛϥʔΛ༻͍ͨϘϦϡʔϝτϦο ΫσΟεϓϨΠͰ͸ऩࠩʹΑͬͯ૾͕ ࿪Ή͕ɼ͜ͷݚڀͰ͸࿪Έ͕গͳ͍ WPMVNFUSJDJNBHF͔Β཭Εͨ࣌ʹً౓ ͕ஶ͘͠མͪΔͨΊɼ౤Өը૾ͷσΟ βϦϯάΛߦͬͯɼً౓มௐΛߦͬͨ ̎໘ίʔφʔϦϑϨΫλΞϨΠɼΨϧ όϊɼ%.%Λ༻͍ͨϓϩτλΠϓΛ ੡࡞ ը૾αΠζͱࢹ໺֯͸εΩϟφϛϥʔͱ
 ίʔφʔϦϑϨΫλΞϨΠʹґଘ͢Δ !9 04"`
  43. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 5IF.BHJD-FOT3FGSBDUJWF4UFHBOPHSBQIZ

    ූ߸Խ͞Εͨ৘ใΛ෮߸Խ͢Δ
 QBTTJWFEJTQMBZ HPBMCBTFEDBVTUJDTͱߟ͑͸ಉ͕ͩ͡ɼ
 ͜ͷݚڀͰ͸൓ࣹޫ΍ࣹग़ޫʹ͍ͭͯߟ͑Δ ম͖ͳ·͠๏Λ༻͍ͯɼྡ઀͢ΔϑΝηοτ ؒͷ'15Λߟྀ͠ͳ͕Βɼ׈Β͔͞ΛߴΊΔ ͜ͱͰɼٻΊΔΠϝʔδͷߴղ૾౓ԽΛͨ͠ %ϓϦϯλʔͱ੾࡟ػΛ༻͍ͯ
 ࣮ࡍʹϓϩτλΠϓΛ࡞੒ͨ͠ Ұൠʹ࢖༻͞ΕΔʹ͸ɼϨϯζ
 ͕େ͖͗͢Δ͠ߴՁ !10 50(` '15ʜGBDFUQBUDIUSBOTGPSNBUJPO
  44. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1BTTJWF.JEBJS%JTQMBZ

    র໌Λ౰͚ͯͨ࣌ͩݟ͑ΔΑ͏ʹͳ ΔσΟεϓϨΠ QBTTJWFEJTQMBZͱͯ͠ʮϢʔβʔͷߦಈʹ൓Ԡ ͢Δʯʮೖࣹ͢ΔޫʹԠ͡Δʯͱ͍͏छྨ͕͋ Δ͕͜ͷݚڀͰ͸ͲͪΒ΋ߦͬͨ ؀ڥޫʹ൓Ԡ͠ͳ͍Α͏ʹ͢Δޫֶઃܭ ϓϩτλΠϓΛ࡞੒͠ɼ໌Δ͞ͳͲʹ ͍ͭͯඃݧऀ࣮ݧΛߦͬͨ ޫ͸ਖ਼໘͔Β౰ͯΔඞཁ͕͋Δ
 େਓ͸ڻ͕͘ɼࢠڙ͸ڻ͔ͳ͍
 "*1ʹΑΔڸ໘൓ࣹʹΑͬͯάϨΞ͕ੜ͡Δ !11 "$&`
  45. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1JYFM"SUXJUI3FGSBDUFE-JHIUCZ3FBSSBOHFBCMF

    4UJDLT ΞΫϦϧͷεςΟοΫʹ༻͍ͨϐΫη ϧΞʔτʹͯɼ೚ҙͷը૾Λදࣔ͢Δ QBQBTΒͷίʔεςΟΫεΛੜ੒͢Δ ݚڀʹൺ΂ɼੜ࢈ίετ͕௿͍ εςΟοΫΛಁաͨ͠ޫ͕೚ҙͷը૾ Λදࣔ͢ΔΑ͏ʹɼεςΟοΫͷ഑ஔ Λ࠷దԽ໰୊Λղ͍ͯಋ͘ ͍͔ͭ͘ͷύλʔϯΛ੡࡞͠ɼJOQVU JNBHFͱಉ༷ͷֆ͕ಘΒΕͨͷΛ֬ೝ ͨ͠ ೖྗύλʔϯͷίϯτϥετൺ͕ߴ͍ ͱ͏·͘දݱͰ͖ͳ͍ !12 &630(3"1)*$4`
  46. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 4VOOZ%BZ%JTQMBZ.JEBJS*NBHF'PSNFECZ

    4PMBS-JHIU "*ϓϨʔτΛ༻͍ͨ೔ޫԼͰ؍࡯Մೳ ͳۭதө૾૷ஔ ΤωϧΪʔফඅ͕গͳ͍
 ैདྷͷݚڀͰ͸԰֎Ͱͷۭதө૾͸ े෼ͳ໌Δ͕͞ग़ͳ͍
 ଠཅޫΛҰ౓֦ࢄͤ͞ΔͨΊͷσΟ ϑϡʔβʔͷબఆ ଠཅޫΛ໛ͨ͠র໌Λઃஔ͠ɼࣨ಺Ͱ࣮ݧΛߦͬͨ
 ϓϩτλΠϓΛ࡞੒͠ɼ԰಺Ͱً౓ɼίϯτϥετ Λܭଌ͠԰֎Ͱ࣮ࡍʹݟ͑Δ͔Λ֬ೝͨ͠ ҉͍৔ॴͰ͸࢖༻Ͱ͖ͳ͍
 ಁաܕʹͰ͖ͳ͍
 "*ϓϨʔτʹΑͬͯղ૾౓͕௿Լ͢Δ !13 *44`
  47. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 %*OUFSBDUJOHXJUIB3FMJHIUBCMF(MBTTFT'SFF

    %%JTQMBZ ؀ڥޫʹ൓Ԡ͢Δάϥεແ͠Ͱݟ͑Δ %EJTQMBZ %MJHIUpFMEͷೖग़ྗΛϦΞϧλΠϜ Ͱߦ͏ ؀ڥޫ΍Ϣʔβʔ͕ಈ͔ͯ͠Δޫݯͷ MJHIUpFMEΛऔಘ͢Δ
 (16ʹΑΔϨϯμϦϯά .3*ͷσʔλΛ༻͍ͯσΟεϓϨΠͷ ੑೳΛࣔͨ͠ ۭؒ෼ղೳɼ֯౓෼ղೳ͕௿͍
 ݱࡏͷϓϩτλΠϓͰ͸άϨʔεέʔϧ ͷΈ !14 $)*`
  48. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1SJOUJOHBOJTPUSPQJDBQQFBSBODFXJUINBHOFUJD

    qBLFT ࣓ੑϑϨʔΫͱޫߗԽथࢷΛ༻͍ͯɼ
 ҹ࡮͢Δ΋ͷͷ#3%'Λ੍ޚ͢Δ ҆Ձʹߴ෼ղೳͷ#3%'Λ࡞੒͢Δ ͜ͱ͕Մೳ ࣓ثϑϨʔΫ͕ಛఆͷ഑ஔʹͳΔΑ ͏ʹ࣓৔Λ଍͠߹ΘͤΔ ͍͔ͭ͘ͷҟͳΔ࣓৔Λ༻͍ͯɼ TJHHSBQIMPHPΛϓϦϯτͨ͠ ࣓ثϑϨʔΫ͕খ͍࣌͞͸͏·͍͔͘ͳ͍
 ϒϥγΛ༻͍ͯɼϑϨʔΫΛՃ͑Δͱϒϥο γϯάͷํ޲ʹ͋Δఔ౓ͷҟํੑ͕ੜ͡Δ !15 50(`
  49. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1SPKFDUJPO#BTFE3FBMUJNF.BUFSJBM"QQFBSBODF

    .BOJQVMBUJPO ϓϩδΣΫγϣϯϚοϐϯάΛ༻͍ ͯ෺ମͷ֎؍Λม͑Δ ΦϒδΣΫτͷܗঢ়΍ҐஔΛ߹ΘͤΔ͕ͳ͍ɽ ·ͨɼಈతͳΦϒδΣΫτʹ΋ద༻Մೳ
 ೝ஌Պֶʹج࣭ͮ͘ײૢ࡞ ΧϝϥͰऔಘͨ͠ը૾ʹରͯ͠ɼΧϥʔϚον ϯά΍ΨϯϚิਖ਼Λߦͬͯੜ੒ͨ͠ը૾͕ന৭ ޫԼͰͲͷΑ͏ʹݟ͑Δ͔Λਪఆ͢Δ ಁ໌ײ΍ޫ୔ײͷ࠶ݱΛϓϩτλΠϓ Λ੡࡞ͯ͠ߦͬͨ ൒ಁ໌ʹ͠Α͏ͱ͢Δͱɼڸ໘൓ࣹ͕ݱΕͳ ͍
 ΞϧϕυΛࣄલʹ෼཭͓ͯ͘͜͠ͱͰࠇͭͿ ΕΛճආͰ͖Δ !16 $713`
  50. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 %*NBHJOHUISPVHI4QSBZ0O0QUJDT

    ਫణͷ͍ͭͨ૭ͷࣸਅ͔ΒMJHIUpFME ΛಘΒΕΔ ैདྷ͸ϚΠΫϩϨϯζΞϨΠͳͲΛ༻ ͍ͨޫֶܥ΍ɼΧϝϥΞϨΠͳͲ͕ඞ ཁͩͬͨ ೖ೦ʹઃܭ͞ΕͨޫֶܥͰͳ͘ͱ΋ɼ Ͳ͏͍͏ৼΔ෣͍Λ͢Δ΋ͷ͔Θ͔ͬ ͍ͯΕ͹ϨΠτϨՄೳͱ͍͏͜ͱ ͜ͷޫֶܥ͸ఆྔతʹධՁ͠ʹ͍͘
 ਫణͷද໘ͷ%εΩϟϯΛߦ͍͑ͯͳ͍͔Βɼ.JUTVCB SFOEFSΛ࢖ͬͯΠϝʔδΛϨϯμϦϯά͠ɼϨΠτϨͷਫ਼౓ ΛධՁͨ͠ ෭࢈෺Ͱ͸͋Δ͕ɼӷణͷεΩϟϯʹ΋໾ཱͭ
 ߴ඼࣭ͳग़ྗΛಘΔʹ͸σϓεਪఆ΍ϑΟϧλ Ϧϯά͕ॏཁ !17 50(`
  51. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 5PXBSE#Y%'%JTQMBZVTJOH.VMUJMBZFS%J⒎SBDUJPO

    ಁ໌ϑΟϧϜʹߴղ૾౓ҹ࡮Λߦ͍ɼ ͦΕΛੵΈॏͶͨࣗ༝౓ͷߴ͍#Y%' σΟεϓϨΠ ैདྷͷݚڀͰ͸ճં૚͕୯ҰͰɼ#Y%'͸ݶΒ Ε͍ͯΔ
 ΑΓࣗ༝౓ͷߴ͍#Y%'σΟϓϨΠΛ੡࡞͢Δ͜ ͱ͕Մೳ ଟ૚ͷಁ໌ϑΟϧϜʹΑΔճંΛϞσϧԽ͠ɺ ೚ҙͷ#3%'·ͨ͸#5%'Λ࠶ݱ͢Δҹ࡮ύ λʔϯΛੜ੒͢Δٯ໰୊Λղͨ͘ΊͷҐ૬ۭ ؒϞσϧ ϑΥτϓϩολʔΛ༻͍ͯϓϩτλΠϓΛ࡞ ੒͠ɼͦ͜ʹίώʔϨϯτͳϨʔβʔͱΠ ϯίώʔϨϯτͷর໌Λ౰ͯͨ র໌৚݅Λఆٛ͢Δඞཁ͕͋Δɽ
 ॲཧ࣌ؒΛ͞Βʹૣ͘Ͱ͖Ε͹ɼΑΓߴ඼࣭ͳ #Y%'σΟεϓϨΠΛੜ੒Ͱ͖Δ
 ϑΣϜτඵϨʔβʔՃ޻͍ͨ͠ !18 50(`
  52. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1BTTJWF-JHIUBOE7JFXQPJOU4FOTJUJWF%JTQMBZPG

    %$POUFOU র໌ͷมԽʹΑΔϋΠϥΠτ΍ӨɼԞ ߦ͖ࢹࠩΛ࠶ݱ͢ΔσΟεϓϨΠ ैདྷͷ%σΟεϓϨΠ͸֯౓ɼҐஔ ͕มಈ͢Δর໌Λߟྀ͍ͯ͠ͳ͔ͬͨ ૚ͷϨΠϠʔͷ͏ͪɼલ໘ΛGPDVTJOH PQUJDTͱͯ͠࢖༻͠ɼϨϦʔϑͷΑ͏ͳޙ ໘Λ൓ࣹͱͯ͠࢖༻͢Δ ݱࡏͷ4-.ͷੑೳʹدΒͣɼఏҊख๏ͷγϛϡ ϨʔγϣϯΛߦͬͨ
 ·ͨɼϓϩτλΠϓΛ࡞੒͠ը૾ΛࡱӨͨ͠ ࠓճͷϓϩτλΠϓ͸ߴղ૾౓͕ͩɼ4-.ͷα Πζతʹখ͘͞ɼ൓Ԡ͢Δ֯౓΋ඇৗʹڱ͍
 άϨʔεέʔϧ !19 *$$1`
  53. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 3FBM5JNF1JYFM-VNJOBODF0QUJNJ[BUJPOGPS

    %ZOBNJD.VMUJ1SPKFDUJPO.BQQJOH ෳ਺୅ͷϓϩδΣΫλʔΛ༻͍ͯෳࡶ ͳܗঢ়ʹϓϩδΣΫγϣϯϚοϐϯά Λߦ͍࣭ײΛม͑ΔͨΊͷ࠷దԽख๏ ϚʔΧʔϨεͰಈతʹϓϩδΣΫγϣ ϯ࣭͠ײΛม͑Δ͜ͱ͕Մೳ র໌ͷޮՌ΍౤Ө͞Εͨͱ͖ͷ࣭Λ໨ తؔ਺ͱͯ͠Ψ΢εɾχϡʔτϯ๏Λ ༻͍ͯඇઢܗ࠷খೋ৐๏Ͱղ͘ ϏϡʔΞʔΛτϥοΩϯά͢ΔγεςϜΛՃ͑ɼ ࢹࠩͱڸ໘൓ࣹΛ֬ೝͨ͠
 ෺ମΛಈ͔ͨ͠ࡍͷ஗ԆΛ֬ೝͨ͠ ϓϩδΣΫλʔ͕ҰͭͰ͸ෆՄೳ
 τϥοΩϯάʹΑͬͯ͸౤Өʹ஗Ԇ͕ൃੜ͢Δ ͕ɼ͜Ε͸࠷దԽܭࢉʹΑΔ΋ͷͰ͸ͳ͍ !20 50(`
  54. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 %FGPSNBUJPO-BNQT"1SPKFDUJPO5FDIOJRVFUP

    .BLF4UBUJD0CKFDUT1FSDFQUVBMMZ%ZOBNJD ੩తͳΦϒδΣΫτʹϓϩδΣΫγϣ ϯΛߦ͍ɼಈతͳ஌֮Λଅ͢γεςϜ ً౓৘ใͷΈϓϩδΣΫγϣϯ͢Δͷ Ͱɼݟͨ໨͸มΘΒͣʹಈ͔͢͜ͱ͕ Մೳ ΧϝϥͰ౤Ө͍ͨ͠ΦϒδΣΫτͷάϨʔεέʔϧ ը૾Λऔಘͯ͠ɼͦΕΛඍখมܗͤ͞Δɽมܗͤ͞ ͨը૾͔Βɼݩͷը૾ͷڧ౓෼෍Λࠩ͠Ҿ͍ͯ౤Ө ͢Δ ҹ࡮ͨ͠ࢴʹ౤ӨΛߦ͍ɼมܗ۩߹ͱ࣮ࡍ ʹͲ͏ײ͡Δ͔ɼͲΕ΄Ͳ࿪Μͩͱײ͡Δ ͔Λௐ΂ͨ ߴ଎ʹಈ͍͍ͯΔҹ৅Λ༩͑Δ͜ͱ͸Ͱ͖ͳ͍
 ϥδΦϝτϦοΫิਖ਼Λ͢Δ͜ͱͰɼ͞Βʹվળͦ͠͏
 EZOBqBTI࢖͑͹ಈతͳΦϒδΣΫτʹ΋ద༻Ͱ͖ͦ͏ !21 5"1`
  55. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 -BZFSFE%5PNPHSBQIJD*NBHF4ZOUIFTJTGPS "UUFOVBUJPOCBTFE-JHIU'JFMEBOE)JHI%ZOBNJD

    3BOHF%JTQMBZT όοΫϥΠτΛݮਰ͢Δ͜ͱͰ% MJHIUpFME΍%ը૾Λ߹੒͢Δੵ૚σΟ εϓϨΠ ैདྷͷൃߦܕੵ૚σΟεϓϨΠͱ͸ҟͳΓɼ ӡಈࢹࠩ΍ɺΦΫϧʔδϣϯɺڸ໘൓ࣹͳ ͲΛ༗͢ΔΦϒδΣΫτΛੜ੒͢Δ τϞάϥϑΟͷݪཧΛ༻͍ͨϘϦϡʔ ϝτϦοΫͳΞοςωʔλͷ࠷దԽ ख๏ )%3σΟεϓϨΠ΍%σΟεϓϨΠ ͷϓϩτλΠϓͷ࡞੒Λߦͬͨ ૚਺ͱްΈΛ૿͢͜ͱͰύϑΥʔϚϯε͕޲্ ͢Δ ύϥϥΫεόϦΞΑΓ΋΍΍ߴՁʹͳΔ͕ɼղ ૾౓΋ً౓΋޲্͍ͯ͠Δ !22 4*((3"1)`
  56. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 &OEUPFOE0QUJNJ[BUJPOPG0QUJDTBOE*NBHF 1SPDFTTJOHGPS"DISPNBUJD&YUFOEFE%FQUIPG

    'JFMEBOE4VQFSSFTPMVUJPO*NBHJOH Χϝϥʹ͓͍ͯը૾ॲཧͷΞϧΰϦζ Ϝͷύϥϝʔλͱಉ࣌ʹޫֶઃܭ΋࠷ దԽ͢ΔFOEUPFOEͷϑϨʔϜϫʔΫ Χϝϥͷσʔλॲཧʹ͍ͭͯͷΈ͸͋ͬ ͕ͨɼޫֶઃܭ΋ಉ࣌ʹߟ͑Δͷ͸ͳ ͔ͬͨ ֬཰తޯ഑ޮՌ๏ʹθϧχέجఈΛ༻͍ͨ
 ͢Έ·ͤΜɼ͜͜΋͏গͪ͠ΌΜͱಡΈ·͢ ޫֶૉࢠ΍ճંૉࢠɼϓϩτλΠϓͷΧϝϥ ͷઃఆͱγϛϡϨʔγϣϯ݁Ռ͕Ұக͢Δ͜ ͱΛ֬ೝͨ͠ ·ͩΞϧΰϦζϜ͕؆୯ͳͨΊɼ)%3Πϝʔ δϯάͳͲͷߴ౓ͳλεΫʹ͸దͯ͠ͳ͍
 ΦϒδΣΫτؒͷΦΫϧʔδϣϯͷڥք͕ద ੾ʹॲཧͰ͖ͯͳ͍ !23 4*((3"1)`
  57. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 1FQQFS`T$POF"O*OFYQFOTJWF%P*U:PVSTFMG%

    %JTQMBZ QBQQFS`THIPTUͷݪཧΛ༻͍ͨ౓ σΟεϓϨΠ MJHIUpFMEσΟεϓϨΠ΍ϘϦϡʔϝτϦοο ΫσΟεϓϨΠͱҟͳΓɼ੡࡞ίετɼίϯ ϐϡʔςʔγϣφϧίετ͕௿͍ ϓϩτλΠ ϓͷ੡࡞͸෼ ۂ໘ʹରͯ͠ΩϟϦϒϨʔγϣϯΛߦͬ ͨɽ
 ԁਲ਼ͷܗঢ়ΛσΟεϓϨΠαΠζͱϏϡʔ ΞʔͷҐஔͱ͍͏ؔ਺ʹͯ͠ղ͍ͨ JQBEͱϓϥενοΫγʔτΛ༻͍ͨϓϩτλΠϓ Λ੡࡞
 ୯؟ɼ྆؟ͷ྆ํͷγεςϜΛ༻͍ͯɼඃݧऀ࣮ݧ Λߦͬͨ ໌Δ͍԰֎ʹ͸ద͞ͳ͍͕ɼனͷΦϑΟεͰ࢖ ͑Δ͘Β͍ʹ͸े෼ͳً౓
 Z [࣠ͷҠಈʹରͯ͠͸มԽ͕Θ͔ΓͣΒ͍
 কདྷతʹ͸಄෦ΛτϥοΩϯά͍ͨ͠ !24 6*45`
  58. ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯ ٕज़ͷΩϞ͸ʁ ٞ࿦ ҏ౻ ࣍ʹಡΉ΂͖࿦จ 
 
 4QJO735PXBSET-JWF4USFBNJOH%7JSUVBM

    3FBMJUZ7JEFP ϥΠϒετϦʔϛϯάͷͨΊͷ ౓ࡱӨՄೳͳ%ΧϝϥγεςϜ ैདྷͷϥΠϒετϦʔϛϯά͸ܭࢉί ετ͕ߴ͍ͨΊɼ%ө૾ͩͬͨ ͭͷڕ؟Χϝϥɼߴղ૾౓ηϯαͳͲ͕ճ సεςʔδʹ͍͍ͭͯΔɽͦΕΛ༻͍ͯ 0%4 0NOJ%JSFDUJPOBM4UFSFP ΠϝʔδϯάΛߦ͏ ਫฏYਨ௚͕˃Y˃ͷࢹ໺֯ɼ GQT 0%4γεςϜͷϓϩτλΠϓΛ੡ ࡞ͨ͠ ݱࡏͷϓϩτλΠϓ͸େ͖͍͕ɼখܕԽ͸ ༰қ
 ࠓޙɼ࿥ԻʹΞϯϏιχοΫΛ༻͍Δ༧ఆ !25 4"`
  59. 2 @†|~¡POISSON-BASED CONTINUOUS SURFACE GENERATION FOR GOAL-BASED CAUSTICSœSIGGRAPH 2014œTOG iˆ

    9]˜Akj&w_$‘dt: Yu&Š$`o&bg$Ÿ `o  BQ$A-*375TA P[—<&Š$  P[—<#SašYu&nO $ 1'/5c}X&xBQA-* 375D“$AP[—<&e” H$ŸSaš&’ƒ$Š "1'/5c}X&;x$Ÿ h‹ @†|~m Iy?6Sašp#" Ÿp#‡š‘dt: y?&w_$!žp#ž… sžŒ‚y?&w_$Ÿ BFy?,).¡  ‘dt:,).¡   '*34&GUŸ "Ž^‰%$#Œ‚C v rq™#= €J™„Rl  { } ™[p #LH$ ’ƒzdW˜ AkjZ#%Ÿ 8–+7-  \K20('E_N› V •f>M  Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita
  60. 3 ?l&=)  VL6/"!HWOnsR j\BN    HA&<37=.='81; -=;

    QFq   UG HA #<+%."4-=; kar @>2#1:`CE]og^pdlbif XPq UGT_ [hJr 6,'7em#<+9%."4-=;k ar 5!*<ZcSKIiMYAqD 6,'7($60: YAr
  61. 4 ;g)8*  OE1+&%APGilK fX=F  UaTDN"[V9QW_>"  648.bh$^P"k Y?2+5!j/7(30$^P"CH"

    IS"\<$    "RZk TDN"@$L"j-'3',#j: `dJeBdJY?M]c"k
  62. 5 ,J*  84&#196LO7 I=-5  >H2 ?.:<?.*$*'" % 

    M/6@K 30# %(EA ?.+MGB () !(C M:<?.F ; DN
  63. DeepWear: a Case Study of Collaborative Design between Human and

    Artificial Intelligence ˌ'5." Natsumi Kato* University of Tsukuba Hiroyuki Osone* University of Tsukuba Daitetsu Sato University of Tsukuba Naoya Muramatsu University of Tsukuba Yoichi Ochiai University of Tsukuba University of Tsukuba Hiroyuki Osone* University of Tsukuba Daitetsu Sato University of Tsukuba Naoya Muramatsu University of Tsukuba Yoichi Ochiai University of Tsukuba ͲΜͳ΋ͷʁ %$("/Λ༻ֶ͍ͯशͤͨ͞ϒϥϯυͷ༸෰ͷը ૾σʔλ͔Βಛ௃Λֶश͠෰ͷΠϝʔδΛੜ੒ɺ ύλʔφʔ͕ͦΕΛ΋ͱʹ෰ΛσβΠϯ͢Δਓؒ ͱਓ޻஌ೳͷ༥߹తΫϦΤΠςΟϒ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ "NB[POͷϓϩδΣΫτΈ͍ͨʹػց͚ͩͰ΍Ζ ͏ͱ͢Δͱͩͱ·ͩணΒΕΔ෰ʹͳΒͳ͍ ϚςϦΞϧʢૉࡐʣ΋ಛ௃ͷ࠶ݱʹͱͬͯେ੾ ݩͷ෰ΑΓ๭ϒϥϯυͬΆ͍ͱ͍͏ධՁग़ͨ աڈʹϚʔέοτʹग़ͨ๭ϒϥϯυͷ෰ͱଞͷϒ ϥϯυͷ෰ͱ͜ͷݚڀͰੜ੒ͨ͠෰Λൺ΂ͯͲΕ ͕๭ϒϥϯυͩͱࢥ͏͔ϢʔβʔελσΟ Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. 
 ٕज़΍ख๏ͷΩϞ ("/ͷߏ଄ʹ%//Λద༻ͨ͠%$("/Λ༻͍ͯ ੜ੒ͨ͠෰ͷΠϝʔδը૾ʹج͖ͮύλʔφʔʢਓ ؒʣ͕෰ͷύλʔϯΛੜ੒͢Δ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ਓؒΛੜ੒ͷաఔʹಥͬࠐΉ͜ͱͰ࣮ࡍʹணΒΕ Δ෰Λ࡞ΕΔ ࣍ʹಡΉ΂͖࿦จ͸ʁ େ৿ޭଠ࿠ /*14
  64. UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL
 GENERATIVE ADVERSARIAL NETWORKS ͲΜͳ΋ͷʁ

    $//Λ࢖ͬͨݚڀʹ͓͍ͯ͋·Γ஫໨͞Ε͍ͯ ͳ͍ڭࢣͳֶ͠शΛ༻͍ͨݚڀ ("/ͷߏ଄ʹ%//Λద༻ நग़ͨ͠ಛ௃Λ࢖ͬͯੜ੒Λߦ͏͜ͱ͕Ͱ͖Δ ٕज़΍ख๏ͷΩϞ ࠷ۙൃද͞Εͨ$//ߏ଄ͷมԽܥΛ༻͍Δ͜ͱ ʹΑͬͯ%//ͷ("/΁ͷಋೖΛՄೳʹ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ %//ͷߏ଄Λ༻͍ͯ("/ͷߏ଄ΛΞοϓσʔτ ͢Δ͜ͱʹ੒ޭˠڭࢣͳֶ͠शʹ࢖͑Δ ٞ࿦͸͋Δʁ ·ͩϞσϧͷෆ҆ఆ͕͞࢒ΓɺϞσϧͷ܇࿅͕௕ ͘ͳΔͱϑΟϧλʔͷαϒηοτ͕୯ҰͷৼಈϞʔ υʹ่ΕΔ ΋ͬͱ҆ఆͨ͠ΞʔΩςΫνϟ͕ཉ͍͠ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ܇࿅͞Εͨ%$("/ͱಛ௃நग़ͱը૾ੜ੒Λߦ͏ ྨࣅͷωοτϫʔΫͱͷΤϥʔ஋ͷى͖͞Λൺֱ ࣍ʹಡΉ΂͖࿦จ͸ʁ LAPGAN(Denton et al., 2015) ͔ͳ ˌ'5." େ৿ޭଠ࿠ Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. "SYJW
  65. Unpaired Image-to-Image Translation using Cycle- Consistent Adversarial Networks ˌ'5." ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ

    1JYQJYͱҟͳΓ຋༁લͷը૾ʹରͯ͠ରͱͳΔ ը૾Λ༻ҙ͢Δඞཁͳ͘ม׵͕Մೳ ٕज़΍ख๏ͷΩϞ ("/Λ༻͍ͨը૾ͱը૾ؒͷυϝΠϯม׵ ૊ͷର༁͕੒ཱ͍ͯ͠ͳͯ͘΋ը૾ͷม׵͕Մ ೳ ͲΜͳ΋ͷʁ Jun-Yan Zhu∗ Taesung Park∗ Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 9UP:ͷม׵ͱ:UP9ͷม׵Λ॥؀తʹֶशͤ͞Δɻ EJTDSJNJOBUPSͰͦΕͧΕͷग़ྗը૾͕ੜ੒ઌͱ ͳΔը૾ͱ۠ผ͕͔ͭͳ͍͔Λ൑அ͠ਫ਼౓Λ্͛ ͯߦ͘ QJYQJYͱಉ༷ͷσʔληοτΛ༻͍ͯɺઌߦͷ ("/ͷग़ྗ݁ՌͱͷఆྔൺֱΛߦͬͨ ΫΦϦςΟ͕ߴ͔ͬͨͷͱର༁ͱͳΔը૾ͳ͠ʹ Ϛοϐϯά͕ग़དྷͨ Pix2pix P. Isola, J.-Y. Zhu, T. Zhou, and A. A. 2017 ৭ͱςΫενϟͷม׵͕ಘҙͳͷʹର͠زԿֶతͳม ׵͸ۤखͰഅʹ৐ͬͯΔϓʔνϯ·ͰγϚ΢Ϛฑʹͳͬ ͨΓݘೣΛม׵͠Α͏ͱͯ͠΄΅Կ΋ى͜Βͳ͔ͬͨ Γ͢Δɻ େ৿ޭଠ࿠ "SYJW
  66. Towards the Automatic Anime Characters Creation with Generative Adversarial Networks

    Yanghua Jin School of Computer Science Fudan University [email protected] Jiakai Zhang School of Computer Science Carnegie Mellon University [email protected] Minjun Li School of Computer Science Fudan Univerisity Yingtao Tian Department of Computer Science Stony Brook University Huachun Zhu School of Mathematics Fudan Univerisity [email protected] [email protected] [email protected] Zhihao Fang Department of Architecture Tongji Univerisity [email protected] ˌ'5." ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ΞχϝΩϟϥͷإը૾σʔληοτʹಛԽͨ͠ ("/ͷ܇࿅ํ๏ͷఏএ ࣗ෼ͷΧελϜΩϟϥΛ࡞Γ͍ͨ ద੾ͳ("/Ϟσϧ͔Βநग़ͨ͠ΫϦʔϯͳσʔ ληοτ ઌߦݚڀ͸ղ૾౓͕௿͔ͬͨΓ΅΍͚Δ ͦΕʹൺ΂ͯΫϦʔϯͳը૾ੜ੒ ղ૾౓͸·ͩ·ͩվળͷ༨஍͋Γ τϨʔχϯάσʔλͷϥϕϧ෼෍͕౳͍͠৔߹ͷ γφϦΦΛߟ͑ෆ҆ఆͰ͋Δ৔߹ͷόΠΞεʹܨ ͛Δ ࣮ࡍʹग़ྗ େ৿ޭଠ࿠ "SYJW
  67. Deep Generative Image Models using a Laplacian Pyramid of Adversarial

    ˌ'5." Emily Denton∗ Dept. of Computer Science Courant Institute New York University Soumith Chintala∗ Arthur Szlam Rob Fergus Facebook AI Research
 New York ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ ٞ࿦͸͋Δʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ࣗવը૾ͷߴ඼࣭αϯϓϧΛ࡞੒͢Δ͜ͱͷͰ͖ Δੜ੒Ϟσϧ ը૾ͷߏ଄ΛΑΓଚॏ͢ΔͨΊʹ("/ͷख๏Λ มߋ࣭͠తʹ༏ΕͨαϯϓϧΛੜ੒ ৚݅෇͖("/ϞσϧͷܗࣜΛར༻ ੜ੒͞ΕΔαϯϓϧͷ࣭͕ߴ͍ ࣮ࡍʹग़ྗ͠ϢʔβʔελσΟ Ϛϧνεέʔϧߏ଄͸ଞͷݚڀͷΞϓϩʔνʹԸ ܙΛ༩͑ΔՄೳੑ͕͋Δ େ৿ޭଠ࿠ "SYJW
  68. ˌ'5." େ৿ޭଠ࿠ ͲΜͳ΋ͷʁ ٕज़΍ख๏ͷΩϞ ઌߦݚڀͱൺ΂ͯԿ͕͍͢͝ʁ Ͳ͏΍ͬͯ༗ޮͩͱূ໌ͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ GANΛར༻ͨ͠௿ղ૾౓ͷը૾͔Βߴղ૾౓ͷ ը૾Λੜ੒͢Δͷੜ੒ωοτϫʔΫ

    ੜ੒ը૾ͱݱ࣮ͱͷဃ཭Λ།Ұͷ࠷దԽର৅ͱ͢ Δ ΑΓਂ͍ωοτϫʔΫΛ࢖༻͢Δ ୯७ʹղ૾౓͕ߴ͍ ޿ൣғͷ.04ςετΛద༻ͨ݁͠Ռ࠷৽ͷؔ࿈ ख๏ʹΑΔ࠶ߏ੒ΑΓ΋ݱ࣮తͳ࠶ߏ੒Ͱ͋ͬͨ ैདྷͷ14/3ʹয఺Λ౰ͯͨը૾௒ղ૾ʹ͸ݶք ͕͋Δ ͪ͜Βͷख๏ͷํ͕ݱ࣮త Photo-Realistic Single Image Super- Resolution Using a Generative Adversarial Network Christian Ledig, Lucas Theis, Ferenc Husza ́r, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi "SYJW
  69. .FUBNBUFSJBM5FYUVSFT :3F/<2@/=<%=03@B=D/1A#:7D3@&&16<3723@$32@= =>3A/<2$/B@719/C27A16   ȐǜȪǞĎ ͳΜͷ࿦จʁ xÜžµ¤¬²ÎU—ƥˆĽ–qz śĪĈèĀķƮȒƶ—ŊƓmt ઌߦͱͷൺֱ

    ̰ɵӚԗl‘ņȓçm ÞȤ—řtq“j|{œ×°Ò¤ªÑח ȥü{e“`o“ ٕज़ɾख๏ͷΩϞ īȵ|mz]x¶©œ×ŧȞ— ȱ_z_“ ݕূํ๏ ¿ÒÌU°—ȱ_zšĄ—Ȗçlq ÐU©UdšĄȖ痡nŦ”“` mt ٞ࿦͸͋Δʁ Ł‚ śĪȝijˆ~{ŅŪǙ śĪȝijûnjmt_ ࣍ԿಡΉʁ %/B7=</:23A75<
  70. 4USFUDIJT'BCSJDBUJOH)JHIMZ4USFUDIBCMF6TFS*OUFSGBDFT !716/3:*3AA3:G'63=>6/<7A 'A/<27:/A*3<2G!/19/G   ȐǜȪǞĎ ͳΜͷ࿦จʁ Ƥʼn¶©œ×Ɨǔmz_~_ƍtŠ œ×°UÞU¬ŊƓ ઌߦͱͷൺֱ

    ®×¨U|¶›¬Å՜ȸȝ—ĥ€Ȃaz_“ ٕज़ɾख๏ͷΩϞ /A3AC0AB@/B3&3<A7<57A>:/G3AB63B71A /G3@x Ʀ—ƥˆĽ–q“j|{NǬȶƒ—Șv4@3F707:7BGdƬo ݕূํ๏ ®×¨UƷmzƙǝȰȻş°³²NĚƜ®×ª×¥ ȇé—ĺ~wt ٞ࿦͸͋Δʁ ǝŔǛǨƶœ¡×—ȉêmt’N5"*—ȱ_z ƒǵži”s` ࣍ԿಡΉʁ AB@3B16/0:33:31B@=:C;7<3A13<B23D713A :31B@=:C;7<3A13<13=457/<BAB@3B16/07:7BG
  71. 5FBSBCMF)BQUJD%JTQMBZUIBU1SFTFOUTB4FOTFPG5FBSJOH3FBM1BQFS '/9CG/!/39/E/ ,C7167B=637AC93'/9/;=B=7G=B/9/ '/;/2/'/9/A67 !/32/,=A674C;7 7B/;C@/ C;7=7A67<=   ȐǜȪǞĎ

    ͳΜͷ࿦จʁ '3/@/0:3|_`ƩLJ—ŊƓmŕ—Ƿ“ŚĄƃ— ÍU°~}—ȱ_zńĬo“j|{ .Ƿóo“j|.Ì°Ã™U—ȆĬo“O ઌߦͱͷൺֱ o{^“ƩLJ—Őȱm~_ Ûé{ŊƓ{e“ ٕज़ɾख๏ͷΩϞ ŕdǷ”“ǒơ‡{|Ƿ”tǒį xÃžU­ Ąƃà_—ńĬmt ݕূํ๏ '3/@/0:3-1z\.f`1c8{*`1z\8 Ǿÿmt ٞ࿦͸͋Δʁ ńĬƒ‚ôƢȮdžd^“ ÍU°Şƶ‚ǏƝëǵud‚K9AI1rm ‚}`“cj”c‘Ĺa“ ࣍ԿಡΉʁ C;/<A1/:36/>B71 7<B3@/1B7=<E7B6/@3/1B7D3D7@BC/: 6C;/<7</@3/:B7;3>6GA71A A7;C:/B=@
  72. 'PVOESZ)JFSBSDIJDBM.BUFSJBM%FTJHOGPS.VMUJ.BUFSJBM'BCSJDBUJPO 7@7: )727;13 :3F/<2@3/A>/@ ,3*/<5*=817316 !/BCA79   ȐǜȪǞĎ ͳΜͷ࿦จʁ

    ȑƏƤʼn—ȱ_z ÅÓ×°U{øƦķƮ—řx ȶƶ—Ŋ“ ઌߦͱͷൺֱ Ƥʼn—ȑƏȱ_“j|wzķƮŞƶdª×ÅÔ{‹ ȄȲ~Ċǵ—ȣtoj|d{e“ ƍĿ|c‹s˜~ĄnķƮ ٕज़ɾख๏ͷΩϞ žčķƮ—řxȒƶ—xf“tŠª¬µË =C<2@G ÷ǺÅÓ×·ďű( ݕূํ๏ ª¬µË—ŐȱmPŰȼmtňD=F3:ŅƻŰȼDŽP ÌÍÓUźȀȻP¬Òœ¬ccwtŚĆ—ĠƲ ٞ࿦͸͋Δʁ =C<2@Gdp0RTCPT>Zy2w+,/ 1-v_)6}„#6 ࣍ԿಡΉʁ  #>3</0
  73. )BQUJD*OWJUBUJPOPG5FYUVSFT1FSDFQUVBMMZ1SPNJOFOU 1SPQFSUJFTPG .BUFSJBMT%FUFSNJOF)VNBO 5PVDI.PUJPOT 79/@C "/5/<=&6=5=#9/;=B=/<2,=87,/;/2/   ȐǜȪǞĎ ͳΜͷ࿦จʁ

    šĄǫǍd^“|ƍ‚ƃ’tf~“c sƃ’ȝ‚}˜~ǫǍd^“c—ǏŃmt ઌߦͱͷൺֱ ȆȦȢŌ|ƃ“ȼćĝ‚Ǐ†z_“dPƃ’ȝ| šĄćĝ‚Ǐ†z_~_ ƿų~Ёȝdƃ’tf~“‘m_ ͏Ε͍͜͠ͱ jÌ¢º­Ëdȓc“|PÅÖ±¤·PĵľP šU·~}ȓȨ{Ƈm_ȆĬdëǵ~“ ݕূํ๏ ǿĩŤƷmz  ƃ‘pxąǚc‘ǃøȇé—mz‹‘`  ƃwz‹‘_PĠŎş—ȱ_zƃ’t_ǟ—Űo  ƃ’ȝ—ąŋmt ٞ࿦͸͋Δʁ ƍ‚Ǫ‘”“ƁțȻdáǽƵf~“` ƃ“‘m_h}ǡt’ơ~`~ċ‹mt sƁțwz~˜uS ࣍ԿಡΉʁ $6GA71/:/<2A3<A=@G4/1B=@A=4B3FBC@3A $:3/A3B=C16
  74. .BUFSJBM1SPHSBNNJOHB/FX*OUFSBDUJPO %FTJHO1SBDUJDF <</)/::5K@2//5&D/<JA /C@3<A=3@)/A7:797 'A/9</97   ȐǜȪǞĎ ͳΜͷ࿦จʁ œ×°Ò¤µ›Ä~ƍĴȒ—ŊƓo“tŠ

    !/B3@7/:$@=5@/;;7<5|_`ŧȞx_z ίϯηϓτ R'/<570:3>@=5@/;;7<5'$ ĬށȒƶ—ȱ_zÅÖ¥ÒÊ×¥—ĺ` ÅÖ¥ÒÊ×¥|ƑŊ—ģ„xho_ R!/B3@7/:>@=5@/;;7<5!$ ƤʼnŞƶ®×¨š¤²ÏŸU°—ȱ_zǦǙ~‹ o“j|{œ×°Ò¤ªÑחĺ` <>CB|=CB>CBd Ʒ Ʒämz_“Yȵñmo_ ͏Ε͍͜͠ͱ !$wzœ×°Ò¤ªÑ×|_`‹d ¶©œ¹Uuh‹{‚~f~’PDžŠ— ŧ—ǦcmzĀ…ĴġȓȨ|ƨƒd__ Ĵġ‚Ƥʼn|ćĝdƉ_ ࣍ԿಡΉʁ @/>63<3B@/<A7AB=@A
  75. 5PVDI$POOFDUJPO"7JCSPUBDUJMF 5FYUJMF 1SPUPUZQF C1733@</<23H   ȐǜȪǞĎ ͳΜͷ࿦จʁ ŨȽß~“Ƥʼn—ȟ_Ľ–qzŊwt‹— ƆǦlqt'=C16=<<31B7=<—ȱ_“|

    ƍǼ䍡ƁȖçdƖ‡”“ ઌߦͱͷൺֱ ®ÒÂUIJì—Ɩ‰j|d{e“ ݕূํ๏ ǿĩŤš×¦U·—ĺwt .ƤʼndƖez_“`Pǂcˆ—Ąn“.|_` `~Ƙdždwt ٞ࿦͸͋Δʁ ÅÒ¬ǥfĄƁćɀo“âĘd}`~‹ ~c—żm_ȇédȄȲ ࣍ԿಡΉʁ ;=B7=</:3A75<
  76. 4IBQF-PDBMJ[BUJPOBOE3FDPHOJUJPOVTJOHB.BHOFUPSIFPMPHJDBMGMVJE)BQUJD%JTQMBZ %=11=%7HH=<B=<7<=!CA=:7<= /<2 G<3BB3=<3A&3<7=@!3;03@   ȐǜȪǞĎ ͳΜͷ࿦จʁ ŜċǴƒȷƶ—ȱ_tƇm_ƃý¶›¬Å՜ ȫIJƒx_z

    ͏Ε͍͜͠ͱ ƃý¶¾œ¬—äȱmzّc_ņȠªÏÊÕU° —ŊƓmPƃƊȿūȱ_“j|dĉƹl”“ ٕज़ɾख๏ͷΩϞ Ŝſ—ch“j|wzãƶcc“ȼ—Ƒİo“ ݕূํ๏ ƃwtíŶd}”uhƕüȓc“c ¶›¬Å՜Ǯȍ{ǗŝmtĞ—DzDž{e“c  xŢĩ’ȫIJƒ—ĦŻmt ٞ࿦͸͋Δʁ £×ƃƊ·ÕUº×¥‚ I 9$/ĸl| ;;Ü恋—ĦDž{e“ñƫǟdȄȲ stŠ‚Ŝſ—’ędžǙƑİo“j|d ēŠ‘”“ ࣍ԿಡΉʁ '/1B7:327A>:/G4=@>@3A3<B7<5 AB744<3AA27AB@70CB7=<
  77. "VHNFOUFE3FBMJUZGPS3BEJBUJPO%PTF"XBSFOFTTJOUIF$BUIFUFSJ[BUJPO -BC !=::G:3F;/<A67A6$/<A33<=7B!=@G6@7AB=>63@!/@B3:BC: C>B/!   ȐǜȪǞĎ ͳΜͷ࿦จʁ %ďű—ȱ_z¢µUµÔÒÇbh“ȜţƟ|_` ȫúȒšëŖç—ĺ_Ps”wzƍĺǦ

    }`~Ȗç—ȯa“c—ǏŃmt ٕज़ɾख๏ͷΩϞ =:= 3<A—‹v_z_x{‹ëŖçl”z_“Ɓțd Ĩa“`mt ٞ࿦͸͋Δʁ Á«ÏšÒœ­ćmzƇm_ȝȞd^”ƒ Ŧ’ƥ˜{_f ࣍ԿಡΉʁ =<7H7<5%/27/B7=<<2C132/B/@/1B7<<B3@D3<B7=</: /@27=:=5G&B/
  78. Y4MBUF"4UJGGOFTT$POUSPMMFE4VSGBDFGPS4IBQF$IBOHJOH*OUFSGBDFT '/9/GC977@/7&/B=A67"/9/;/@C,=A6767@=/E/6/@/,/AC/97 /9367   ȐǜȪǞĎ ͳΜͷ࿦จʁ FA:/B3|_`ĸl|ĞƂȖçd{e“ œ×°UÞU¬÷Ǻ ઌߦͱͷൺֱ

    Ůǯƒ|ƚÓ×¥îůƸa`“Ƹđƒ— ĥ€Ȃaz_“ ٕज़ɾख๏ͷΩϞ Ĝċٗȱ_zœ×°UÞU¬ȖĞ—ĺ` ٞ࿦͸͋Δʁ š¤²ÏŸU°ǧŒ—x~g«Ñœ×·—xh“ j|{þǟ—Ȗa‘”“`o”ƒǑȝĞÜù Ğ{e“ ࣍ԿಡΉʁ /;;7<5(A3@<B3@4/13A
  79. "DU.PME3BQJE 1SPUPUZQJOHPG&MFDUSPOJD$JSVDJUT PO%0CKFDUT XJUI*OUFSBDUJWF7BDVVN'PSNJOH C<7167,/;/=9/,/AC/97 /9367,=A6767@= /E/6/@/   ȐǜȪǞĎ

    ͳΜͷ࿦จʁ ǝċòɁ—ȱ_tP śĪȒƶ ÅÖ·°œÂ×¥ŧȞ ઌߦͱͷൺֱ ǔƀ[ÅÓ×°U{‚ŰȼmtĞ—Ȗa“j|d {e~_dP$@=B=!=:2‚Űȼį‹ȖĞo“j|dëǵ ٕज़ɾख๏ͷΩϞ ÅÒ¬²³¤Ǩǝƒœ×¤—ȱ_“j|{P ÅÖ·°œÂ×¥mt‹§×ÂÏU°—ȴȱmt Ċǵ—ƥˆŀ‰j|d{e“ ݕূํ๏ Ǩǝƒœ×¤ƶƛ^t’ǖĶ|ÂׁǑl ćĝ—Ǐ†t ٞ࿦͸͋Δʁ ĦŻģìdƿų~ǾȾćĝ~wz_~_‚ ~rS
  80. $POOFDUJOH-PPLBOE'FFM"TTPDJBUJOHUIFWJTVBMBOE UBDUJMFQSPQFSUJFTPGQIZTJDBM NBUFSJBMT *3<H63< ,C/<&6/=F7=<5 */<5&7GC/< =<52E/@223:A=<   ȐǜȪǞĎ

    ͳΜͷ࿦จʁ ŨȽȋdž—ŬŠŖý¶U°|ƃý¶U° ǢĽ—bj~wt ઌߦͱͷൺֱ ĊõĀū—ȱ_tȒƶȒȵǫƒx_zȵñ— ĺ~wt ȋdžðƫc‘šĄȭƧ—mt’PsĐj|d {e“ ٕज़ɾख๏ͷΩϞ Ŗý¶U°|ƃý¶U°—ȕTƖƓmP ȒȵǙ~¿ÒÌU°—ȱ_z¶›UÅÒUº×¥’ s”‘—ģ„xh“ ݕূํ๏ ȒȵǙ~¿ÒÌU°Ʒmz9;3/<AȞ—ȱ_z Ŵȵmt ‡tPĊõĀū‚ ŨȽ—B@/7<7<5ŐȱmP ŏ’ ŨȽ{B3AB—ĺ~wt ࣍ԿಡΉʁ %3B@=5@/>671 A3<A7<5 &6/>33AB7;/B7=< 7<</BC@/:7::C;7</B7=<
  81. 3FGMFDUJPOTPO$SBGU3FTFBSDI'PSBOE5ISPVHI%FTJHO =<<73=:AB378<:7A3D/<23<=D3</D72@=6:716075/7:&3::3<   ȐǜȪǞĎ ͳΜͷ࿦จʁ G0@721@/4Bx_zǩŋ—Ǫ“tŠ¶©œ×Ó¨U² ŧȞx_z ઌߦͱͷൺֱ b_zÚ`ƷŽ|~“ȲƤdƬazb’P

    s”‘Ʒmz¶©œ×ąǚc‘Ȓŗ—Ų†“ ٕज़ɾख๏ͷΩϞ %3A3/@164=@3A75<|%3A3/@16B6@=C563A75<1 ‚"41:LSD ݕূํ๏ %3A3/@16B6@=C563A75<1q-G0@721@/4B1 FQ<EH8al~V(* ٞ࿦͸͋Δʁ ģɂȍȓ{}˜~·Â³¤—Ú`c }ǃø{Ó¨U²mtc Ǫ‘”tDžŠNJŽǟ —Ĺaz_“d~rj xS ࣍ԿಡΉʁ /<21@/4B7<5>3@A=</:7H32 1=;;C<71/B7=<7<B3@4/13A G0@72%3/AA3;0:/53
  82. .FEJBUFE$SBGUT%JHJUBM1SBDUJDFTBSPVOE $SFBUJWF)BOEXPSL /<73:/%=A<3@   ȐǜȪǞĎ ͳΜͷ࿦จʁ ĴġƷmz¶«°Ô~ŧȞd}`_``mz 斔“c—&>G<|_`ª¬µË—ǔmzĹa“ Ŋ’ȝP§´Ėȫd{e“

    ٕज़ɾख๏ͷΩϞ &>G<‚$=@B/07:7BG$@=13AA /<2 <D3AB32'7;3 #11/A7=<A/<2#>>=@BC<7B73A#11/A7=<A <<=B/B7=<'/1B7:7BGxīȵd^“ ٞ࿦͸͋Δʁ ¶«°Ôďűƌșǻ_’ÓšÔ°œË{ Ėȫdëǵ~“ ¶«°Ôďű—ĴġƈǤlqtŚPs”d }`_`ÞȤȩ×řxc—ǀ“ ࣍ԿಡΉʁ ɂȔnŒ~_h}ŁĤ+&Řt`~xd ^wtȊō{Ĵġ½³¢¯×bh“ŊȈ
  83. )ZCSJE3FBTTFNCMBHF"O&YQMPSBUJPO PG$SBGU %JHJUBM'BCSJDBUJPO BOE"SUJGBDU6OJRVFOFTT ;7B-=@/</<2 3/6 C316:3G   

     ȐǜȪǞĎ ͳΜͷ࿦จʁ ŧĴġȈ|¶«°ÔÙÄÓ¦UªÑחƥˆĽ–qz ŊȈ—xf’Ps”—ǔmz¶«°ÔÙÄÓ¦UªÑ×P ¤Ò÷PšU·P¶©œ×Ƈm_ćĝƒ—ǀ“ ओு jɂȔ{‚@/4B3AB@C1B7=<%3AB=@/B7=< xąǚc‘ Ų†‘”z_z @/4B [email protected]ƒ_8] 6YG@BQ/2W[1j€ 8bh)6'.#-$e|1PA=#u%/6"4 3AB@C1B7=< MJa50!,tig&w7#*'1Xx8t(, no^U8] s) %3AB=@/B7=< ȏĪo“j|—ǔmz1@/4BǫǍȘƳPȃǙëǵƒ— ƖˆŰo |Ų†‘”z_“ ٕज़ɾख๏ͷΩϞ ó”tĴġȈ—ȱ_“j|{Ƈm_¶©œ× Ĺŋ—ĺ~_PsŢȾ—Ŋwt
  84. &MFDUSPUBDUJMF 5PVDI4VSGBDFCZVTJOHUSBOTQBSFOU(SBQIFOF -%/27D=83D71$33163@=E3@&/?C3$<2@3E '/A/<=</11=@A=3@@/@73<A=<    ȐǜȪǞĎ ͳΜͷ࿦จʁ ǁƤğƤʼn{^“¥ÒÞחȱ_z

    °³²¶›¬Å՜—ŊƓmt ઌߦͱͷൺֱ ŭȳ¶›¬Å՜{‚ƿáƃ’kkv ÛU¸¾³¤{^wtd'‚ŖýƁțȅy_t )7@BC/:B3FBC@3—Ɩˆuoj|d{e“ ٕज़ɾख๏ͷΩϞ I  H I  )ª¥¹Ô—ÐU©UdƠƼmz =<B@=::3@d¼œ­—ŸĕmzB23D723ƪƄo“ ݕূํ๏ 'd#" #Ƃƺ{ǖĶd}”uhȖço“c— Ǐ†tQȼd "Ś   "Ś łȓd Ĭ”t ٞ࿦͸͋Δʁ dzɂȔuh}j`mtƃ’kkvȖç— ȴȱmt¶¾œ¬d^‡’ƋĚ~wz_~_ ‚~rS ࣍ԿಡΉʁ $=:/@7BG4431B7<:31B@=D70@/B7=<4=@ '/1B7:37A>:/G
  85. &YQMPSJOH.VMUJNPEBM8BUDICBDL5BDUJMF %JTQMBZVTJOH8JOEBOE7JCSBUJPO ,=C<50= @/;&67;/3G3=< 33336GC9 33   ȐǜȪǞĎ ͳΜͷ࿦จʁ

    ¬ÉU· ³²—ûnjo“tŠȎ|ƆǦ—ȱ_t Ƈm_œ×°UÞU¬ ઌߦͱͷൺֱ ȯa“őĢdƿƶ{‚~f xƥˆĽ–qtj| ٕज़ɾख๏ͷΩϞ ƍƂǧníŶȯa‘”tőĢ{‹ŨȽdß~”ƒ ěȕo“j|d{e“ ݕূํ๏ ŢňȎ|ƆǦ—ȱ_t¶›¬Å՜—ŊƓm šÅÓ¦UªÑ×||‹Őȱmt ٞ࿦͸͋Δʁ ɄŚĠ‚Ňq‘”“ƁțȻdŹ~_c‘Łò ħĔ—ĺ~wt`~{PÍUÔ¬Ƅļ|c Őwzˆz‹Ȧǹs` ࣍ԿಡΉʁ 3A75<7<5/"=<1=<B/1B*3/@/0:3'/1B7:37A>:/G (A7<57@4:=EA
  86. )BQCFBU 4JOHMF%0'8JEF3BOHF8FBSBCMF)BQUJD%JTQMBZ ,CAC93,/;/H/977@=<=@7!7B/93%GCB= #2/AC36/<*C&6=7167 /A35/E/!7</BAC '/939=A67   ȐǜȪǞĎ ͳΜͷ࿦จʁ

    />03/B|_`b|—Ž`’f|mz ƆǦ—ÛU¸¾³¤|mzȗo¶¾œ¬ŊƓ ઌߦͱͷൺֱ ñƫǟdĻfė_ÛU¸¾³¤—ȗq“ Ljƾmo_ ٕज़ɾख๏ͷΩϞ x§šÕ¬ÍU°dDZwtȡƶ— ǐĻȓŔȻÈӟ²Õחȱ_zƶăexhP ¡U¶›¡š×ŶÍU°Ƒİ—ĺ` ݕূํ๏ ƍǿĩŤè‹~m/>03/B/>BC/B=@ xƂƺ{åā—ǎ_z‹‘_sįxąǚ c‘ȇ闬§š{Ȇmz‹‘wt ٞ࿦͸͋Δʁ 75C@3\!3B/:b_z/>03/B2/>BC/B=@352 Ⱥls`uh}P¥ÒÃc‘u|ĪƂƺ’‹ Ø_`Ąn“
  87. 53"/4'03.&NCPEJNFOUPGl3BEJDBM"UPNTzBU.JMBOP%FTJHO8FFL 7@=A67A6777@=A67A677&3/<=::;3@;7B-=@/<$67:7>>&16=3AA:3@/@32=C<BA   ȐǜȪǞĎ ͳΜͷ࿦จʁ .%/271/:B=;A.|_`ǦǙPńķƓëǵPȖĞŞȬ~ʼnȹ —ȱ_tÀÏUÉלװҤªÑׁÁ«Ñׁ ÅÖ·°œÂ×¥ ઌߦͱͷൺֱ

    §×ÂÏU°Ƒݐ’ǴǠˆt_~Ӛ԰œË{ ȖĞdëǵ ٕज़ɾख๏ͷΩϞ š¤²ÏŸU°d X >7<x_z_“Í«ÏUÔ —ZƿÝ|mz¨UÞ¬—ŊƓo“ šÅÓ¦UªÑׂ #>3<@/;3E=@9A {ŷc”z_“ ٞ࿦͸͋Δʁ %/271/:B=;Adp2;TBO=?NT1] 8 ûnjo“ƤƔ‘m_‹udPĻǟ~ÕÆÔ ǣƽo“‚‡uŚĆdcc’s` ࣍ԿಡΉʁ A6/>316/<57<5B/<570:3A >@=5@/;;/0:3;/B3@7/:A ȷ”—Ǔ`
  88. "FTUIFUJDTPG)BQUJDT"O&YQFSJFODF"QQSPBDI UP)BQUJD*OUFSBDUJPO%FTJHO *3<2G/AA3<!75C3:@C<A :=<A=   ȐǜȪǞĎ ͳΜͷ࿦จʁ ƃýćo“œ×°Ò¤ªÑח}` œŠ”ƒȺ_c—(A3@F>3@73<13ąǚc‘ǏŃo“

    ઌߦͱͷൺֱ œ×°Ò¤ªÑ׶©œ×‚ xưȦ ȝȞɂc‘Pƍƶĩc‘d^“dŁò‚įŤąǚ c‘šÅÖU²—ĺ` ݕূํ๏ ŢňÅÖ·°œÂ×¥—ĺ_ ŨȽ‹—ŊwtVÇ°×P¸š¼ÄW ٞ࿦͸͋Δʁ ȧǙ|~“ƶĩ—Ǫ“‚}`o”ƒȺ_c— ȓƚo“ œ×°Ò¤ªÑאwzǪ‘”tƶĩ| ȕĄý—ģ„xht_ ࣍ԿಡΉʁ '63/>B71'=C16 B==:97B 3F>:=@7<5B63A7;>:36/>B7123A75<A>/13 !/B3@7/0:3
  89. .BUFSJBCMF3FOEFSJOH%ZOBNJD.BUFSJBM1SPQFSUJFTJO3FTQPOTF UP%JSFDU1IZTJDBM5PVDIXJUI4IBQF$IBOHJOH*OUFSGBDFT 3<"/9/5/97 C93)7<9 /@32=C<BA/<73:*7<26/;/<73: 37B67<53@&3/<=::;3@ 7@=A67A677   

    ȐǜȪǞĎ ͳΜͷ࿦จʁ ǦǙȖĞo“œ×°UÞU¬—ȱ_z Ƥʼnd‹xǫƒœ×°Ò¤ªÑחëǵo“ ŧȞ ઌߦͱͷൺֱ ƤʼnǫƒŞƶNjȧmzœ×°Ò¤ªÑחĺ` %/27/:B=;A‚Ĺa—Ğmt_ĄndėcwtW ٕज़ɾख๏ͷΩϞ Ƥʼnǫƒ—4:3F707:7BG3:/AB717BGD71=A7BGȓñmzĹa“ ǦǙ~Ğ|Ƥʼnǫƒ—ǧŚŝo &=:72!=23:ó¤ȞƱ—ȱ_“ 7?C72!=23:ó¤ȞƱ|ƞƎǶȝǘş—ȱ_“ ݕূํ๏ šǙ~š×¦U·|ǕȻǏс x—ĺ~wt ٞ࿦͸͋Δʁ ǕȻǏсȚƏd ƍ|Ź~cwt ࣍ԿಡΉʁ ;0=27;3<B=4%/271/:B=;A
  90. 6OGPMEJOHBO*OEVTUSJBM%FTJHO"QQSPBDIUP 1IZTJDBM$PNQVUJOH :3;3<B-63<5   ȐǜȪǞĎ ͳΜͷ࿦จʁ œ×±¬·ÓšÔ¶©œ×—Ā…ĀƖƷmzP Û«¢Ô§×ÂÏUµ›×¥—ÅÖ·°œÂ×¥ ŧȞ|mzƋxhz‹‘`tŠȝȞɂ

    ओு śĪÕ×±Ó×¥|cĬŢƐö{Ȓƶ—Ú` ~‘PÛ«¢Ô§×ÂÏUµ›×¥—ūǪmz µ¤¼Ö«U—ǢĽmtĊǵǙ~ÅÖ·°œÂ×¥d {e“|Ⱥ_u•` ٕज़ɾख๏ͷΩϞ %3A3/@164=@3A75<.%3A3/@16B6@=C563A75<8t(, ĺ` ٞ࿦͸͋Δʁ Û«¢Ô§×ÂÏUµ›×¥—Ā…j|{ ĀƖƽéDŽïǘȖ痋t‘oc ͼ—Ŋ“j|{}`DžŠ—ǪzPo{ Džwz_“DžŠ|ƥˆĽ–l“c ࣍ԿಡΉʁ "3E27@31B7=<A7<23A75<1=5<7B7=<DžŠ—Ǫ“Ƀ
  91. %FTJHOJOH5ISPVHI.BLJOH&YQMPSJOH UIF4JNQMF)BQUJD%FTJHO4QBDF /;7::3!=CAA3BB3%716/@2/<9A   ȐǜȪǞĎ ͳΜͷ࿦จʁ ƃý—ȱ_t¶©œ×—ĺ`tŠ ƍTkY1ĖǔDzŠ—řwz‹‘`tŠ ´UԗŊƓmt

    ओு ƃýŞƶ‚Dž‘”z_“dj”—ȱ_z¶©œ×o“ |_`j|‚^‡’~_Q s”‚ƃý|_`‹dťąǙ~‹{^’P œÌU«Ėȫdǰm_c‘{^“Q j´UԗŐ`j|{ƃýƷmzĄƒ—ĻŠP ¶©œ×ŧȞȌĒlq“j|—ƣ` ٞ࿦͸͋Δʁ ^“ǘǟ‚ƕms` Ƥʼnǫƒ|Łò`~ďű‚ƨƒd__‘m_ ࣍ԿಡΉʁ @734'/F=<=;G=4 '/1B7:3::CA7=<A /<23;=<AB@/B7=<A
  92. 4ZOD%PO **#JP4ZODISPOJDBM $PNNVOJDBUJPO AA3G '/9/6/A679767B=B=   ȐǜȪǞĎ ͳΜͷ࿦จʁ .&G<1=<Ʌ.|_`ƅǸǧĉ—ȱ_z

    ƴƍ|ȁĭı§ÊϺ¦UªÑחĺ`ƩLJ ઌߦͱͷൺֱ ĄƁĖȫƷmzƅƭĮǦ—ȱ_“‚ ŵŠz ٕज़ɾख๏ͷΩϞ íŶc‘ƅǸƏ—ĠƲmPsjc‘Ȗç— ǭˆŦ“j|{ũĉǙ~wz_“c}`c— Á«ÏšÒœ­o“ ٞ࿦͸͋Δʁ ŵŠz|cкU¤wzƿıdƵcwt ƇČƒ—ůȲŖmz_“S ࣍ԿಡΉʁ CB=<=;71<3@D=CAAGAB3;/1B7D7BG7<3;=B7=< /@3D73E7=:=571/:>AG16=:=5G
  93. 5PVDIMFTT5BDUJMF%JTQMBZTGPS%JHJUBM4JHOBHF.JEBJS)BQUJDTNFFUT-BSHF4DSFFOT =71 =@3<B6G!/@13::= 7=@2/<=%716/@2 /G23</<73: @7447B6A@/75 344@3G/<</6 7;3@719#@3AB7A 3=@57=C'=; /@B3@L@5

    !M::3@&@7@/; &C0@/;/<7/<   ȐǜȪǞĎ ͳΜͷ࿦จʁ ƃ‘pœ×°Ò¤ªÑ×ëǵ~¶«°Ô¨œ»U« ओு ĜljǦŊ“ƃýƶĩ‚œ×°Ò¤µ›Ä~ œ×°UÞU¬—ûnjo“j|d{e“ ٕज़ɾख๏ͷΩϞ #>3< 1:=A3 7<3A1/<%/<2=;!=D7<5|_wt ŨȽŧǦe—ǭˆŦ“ ٞ࿦͸͋Δʁ ¶«°Ô¨œ»U«d}˜~ǮȰ~‘’IJìǙƍT œ×°Ò¤ªÑחƯoj|d{e“S §×µ×´ǮȰwz_es` ࣍ԿಡΉʁ '=C167<5B637<D7A70:3
  94. CHI 2018, April 21²26, 2018, Montr࣭al, QC, Canada Effects of

    Enhanced Gaze Presentation on Gaze Leading in Remote Collaborative Physical Tasks Mai Otsuki Keita Maruyama Hideaki Kuzuoka Yusuke Suzuki 201511442 ᮡᾆᬛ⌮ 㸦௖ࢥ࣮ࢫ㸧 ࣭◊✲ෆᐜ 㐲㝸ࡢඹྠసᴗ࡟࠾࠸࡚ᑐ㠃࡛ࡢసᴗ࡜ྠᵝ࡟ど⥺࡟ࡼࡿࢧ࣏ ࣮ࢺࡢ᭷ຠᛶࢆ㧗ࡵࡿࡓࡵࡢࢹࣂ࢖ࢫ ThirdEye ࡢ㛤Ⓨࠋ ࣭ඛ⾜◊✲࡜ࡢẚ㍑ ඛ⾜◊✲࡛ࡣ≉Ṧ࡞ࢹ࢕ࢫࣉࣞ࢖ࡢᚲせᛶࡸࠊ࣊ࢵࢻࢭࢵࢺࡢ╔ ⏝࡟ࡼࡗ࡚࣮ࣘࢨ࡬ࡢ㈇ᢸࢆᙉ࠸ࡿࡶࡢࡀከ࠸ࠋ ࡇࡢ◊✲࡛ࡣᦠᖏ➃ᮎ࡟⡆༢࡟㏣ຍࡍࡿࡇ࡜ࡀ࡛ࡁࡿࢹ࢕ࢫࣉ ࣞ࢖ࢆᥦ᱌ࡋ࡚࠸ࡿࠋ ࣭ᢏ⾡ࡸᡭἲ ༙⌫≧࡟࢝ࢵࢺࡋࡓேᕤ࢘ࣞ࢟ࢧ࢖ࢺ㸦ࢸࣞࣅ▼㸧ࢆ⏝࠸ࡿࡇ࡜ ࡛ࢩࢫࢸ࣒ࡢ཯ᛂᛶࢆ㧗ࡵࠊࡉࡽ࡟㟁Ẽᾘ㈝㔞ࢆᢚ࠼ࡿࡇ࡜࡛ᦠ ᖏ➃ᮎ࡛ࡢ౑⏝ࢆྍ⬟࡟ࡋ࡚࠸ࡿࠋ ࣭ᐇ㦂᪉ἲ Skype ➼ࡢࣅࢹ࢜㏻ヰࢆ௬ᐃࡋ࡚㘓⏬࣭㘓㡢ࡉࢀࡓヰࡋᡭࡢࣅࢹ ࢜ࢹ࣮ࢱ࡟ࡼࡗ࡚ 4 ᯛࡢ࣮࢝ࢻ࡟ࡘ࠸࡚ㄝ᫂ࢆཷࡅࡿ㝿࡟ ThirdEye ࡀ࠶ࡿሙྜ࡜࡞࠸ሙྜ࡟ࡘ࠸࡚ࠊ⪺ࡁᡭࡀど⥺ࢆ࣮࢝ ࢻ࡟ྥ࠿ࡗ࡚⛣ࡋጞࡵࡿࡲ࡛ࡢ᫬㛫࡜㐺ษ࡞࣮࢝ࢻ࡟ど⥺ࢆᅛ ᐃࡍࡿࡲ࡛ࡢ᫬㛫ࢆィ ࡋࡓࠋ ࡲࡓᐇ㦂ᚋ࡟࢔ࣥࢣ̿ࢺ࡟ࡼࡿㄪᰝࢆ⾜ࡗࡓࠋ ࣭㆟ㄽ ⿕㦂⪅ࡢど⥺⛣ືࡢ᫬㛫ィ ࡜࢔ࣥࢣ࣮ࢺࡢ୧᪉࡟ࡘ࠸࡚ࠊ ThirdEye ࡀ㐲㝸ࡢࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࡢࢧ࣏࣮ࢺ࡟࠾ࡅࡿ᭷ຠ ᛶࡀ♧ࡉࢀࡓࠋ ௒ᅇࡢᐇ㦂࡛ࡣᑠᆺࡢ➃ᮎ࡛ࡢど⥺ࢧ࣏࣮ࢺࡢࡳࢆ᝿ᐃࡋ࡚⾜ ࢃࢀ࡚࠸ࡿࡀࠊ௒ᚋࡣࡉࡽ࡟኱ࡁ࠸➃ᮎ࡟࠾࠸࡚ ThirdEye ࡀ᭷ ຠ࡛࠶ࡿ࠿࡝࠺࠿ࠊࡲࡓࢪ࢙ࢫࢳ࣮ࣕ࡟㛵ࡍࡿࢧ࣏࣮ࢺ࡜⤌ࡳྜ ࢃࡏࡓሙྜ࡟ࡘ࠸࡚ࡢ᳨ドࢆࡋ࡚࠸ࡃ࡜㏙࡭࡚࠸ࡿࠋ
  95. Digital Gastronomy: Methods & Recipes for Hybrid Cooking - UIST2016

    Moran Mizrahi, Amos Golan, Ariel Bezaleli Mizrahi, Rotem Gruber, Alexander “Zoonder” Lachnish, Amit Zoran (The Hebrew Univ. of Jerusalem, MIT Media Lab, Bezalel Academy of Arts and Design) ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ طଘͷσδλϧϑΝϒϦέʔγϣϯػثΛ఻౷తͳΩο νϯʹಋೖ͠ɼख࡞ۀͱσδλϧͳ࡞ۀΛ૊Έ߹Θͤ ͨɼϋΠϒϦουϨγϐΛ࡞Δ ୯ͳΔγΣϑʹ͔͠Ͱ͖ͳ͍ख࡞ۀͷ࢓ࣄͱσδλϧ ϑΝϒΛ૊Έ߹ΘͤͨϋΠϒϦουσβΠϯ ύϥϝτϦοΫͳઃܭΛ༻͍͍ͯΔ  ྉཧதͷ੒෼ͷ૊੒ɼࠞ߹͞ΕΔཁૉΛ੍ޚ ̎ Ճ೤࣌ʹԽֶ൓Ԡ͕ى͜ΔΑ͏ͳ৯඼ͷ෼ࢠߏ଄ ͷมԽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹϓϩͷγΣϑͱҰॹʹϨγϐΛ͍͔ͭ͘ߟ͑ͯɼ ௐཧΛߦͬͨɻ GVUVSFXPSLɿطଘͷௐཧํ๏ͱͷϋΠϒϦουϨγϐ ͷ͞ΒͳΔௐࠪɻγΣϑͷखʹΑΔΑΓϩʔΧϥΠζ ͞ΕͨπʔϧΛ࡞ΔɻϓϩͷΩονϯʹಋೖ͢Δɻ &GSBU 5"FUBM$)*` +BDPCT +FUBM $)*` ;PSBO "4*((3"1)` යࢠҁՖ ਓؒίʔε    ;PSBO "FUBM ;PSBO "FUBM
  96. Hybrid Practice in the Kalahari: Design Collaboration through Digital Tools

    and Hunter-Gatherer Craft - CHI15 Jennifer Jacobs, Amit Zoran (MIT Media Lab, The Hebrew Univ.) "CTU *OUSPEVDUJPO $PODMVTJPO ඇσδλϧͳ޻ܳͱσδλϧϑΝϒϦέʔγϣϯͷ૊Έ߹Θͤɻඇσδλϧͷ׳श΍Ձ஋؍Λಎ࡯͢ΔͨΊͷڞಉ ੍࡞ɻ ఻౷తͳઌॅຽจԽͷ࣮ફΛཧղ͢Δ͜ͱͰɼٕज़తʹࢧ࣋͞ΕͯΔ੡࡞ʹؔ͢Δର࿩͕ڧԽ͞ΕΔɻڞಉ੍࡞ ͷ࢓૊ΈΛ௨ͨ͡ඇσδλϧͳจԽͱͷؔΘΓʹΑͬͯɼίϛϡχέʔγϣϯͷҧ͍ΛຒΊΔ͜ͱ͕Ͱ͖ɼจԽʹ ͓͚Δ੡࡞Λཧղ͢Δ͜ͱ͕Ͱ͖Δɻඇσδλϧ࢈ۀจԽʹσδλϧπʔϧΛ૊ΈࠐΉ͜ͱͰɼٕज़ͷΞϑΥʔμ ϯεͷݶքʹ͍ͭͯͷ৽ͨͳಎ࡯ΛಘΔɻ ίϛϡχέʔγϣϯ্ͷݫ͍͠՝୊ʹ௚໘ͭͭ͠ɼڞಉ੍࡞͸ࣗ෼ͷ໨తΛΞϓϩʔνΛ఻͑Δ͜ͱ͕Ͱ͖Δɻڞ ಉ੍࡞ͷ؀ڥͷՁ஋ΛաখධՁ͢΂͖Ͱ͸ͳ͍ɻ යࢠҁՖ ਓؒίʔε   
  97. Cooking with Robots: Designing a Household System Working in Open

    Enviroments - CHI10 Yuta Sugiura, Daisuke Sakamoto, Anusha Withana, Masahiko Inami , Takeo Igarashi (KMD, Univ. of TokyoɼJST, ERATO, IGARASHI Design UI Projectɹ) "CTU *OUSPEVDUJPO $PODMVTJPO Φʔϓϯͳ؀ڥͰಈ࡞͢ΔௐཧγεςϜͷఏҊɻ༠ಋՃ೤ௐཧثͷϙοτʹ༷ʑͳࡐྉΛೖΕͯௐཧ͢Δɻࢦࣔॻ ʹैͬͯՃ೤ڧ౓Λௐ੔͢ΔɻγεςϜ͕ͲͷΑ͏ʹͯ͠ϩϘοτٴͼਓؒݻ༗ͷཁૉΛڞ༗ϫʔΫεϖʔεʹ૊ ΈࠐΉ͔ɻ ΄ͱΜͲͷՈి͸ϘοΫεͱ͍͏ด࠯͞Εͨ؀ڥͰಈ࡞͍ͯ͠ΔɻΦʔϓϯͳ؀ڥͰΑΓߴ౓ͳλεΫΛ࣮ߦ͢Δ Ոి͕ඞཁɻϩϘοτ͸ϢʔβʔͱۭؒΛڞ༗͢ΔͨΊɼ؀ڥͷಈతมԽʹ҆શͰରԠͰ͖Δඞཁ͕͋Δɻෳࡶ ͳݱ࣮ͷλεΫΛ੍ޚ͢ΔͨΊͷద੾ͳϢʔβʔΠϯλʔϑΣʔε΋ఏڙ͢Δඞཁ͕͋Δɻ Ϣʔβͱͷڞ༗ௐཧ؀ڥΛ࣋ͭௐཧγεςϜ$PPLZΛ։ൃͨ͠ɻ୯७ͳௐཧλεΫʹ͢ΔͨΊʹɼௐཧࢦࣔͱϰΟ δϡΞϧϚʔΧʔؚ͕·ΕͨϨγϐΛ࢖༻͢ΔɻϢʔβ͸ɼࡐྉఴՃͷλΠϛϯάɼುͷ֧፩ɼిؾௐཧثͷ੍ޚ ͳͲͷࢦࣔΛγεςϜʹग़͢ɻϩϘοτ͸ͦͷࢦࣔʹैͬͯλεΫΛ࣮ߦɻ࣮ݧͰ͜ͷख๏Ͱ͏·͘ௐཧͰ͖Δ͜ ͱΛ֬ೝͨ͠ යࢠҁՖ ਓؒίʔε   
  98. The Hybrid Artisans: A Case Study in Smart Tools -

    ToCHI2014 AMIT ZORAN, ROY SHILKROT, SURANGA NANYAKKARA, JOSEPH PARADISO(MIT Media Lab, Singapore Univ. of Tech. and Design) "CTU *OUSPEVDUJPO $PODMVTJPO ਓؒͱػց͕૬৐ޮՌͰಈ࡞͢ΔϋΠϒϦου૬ޓ࡞༻ͷύϥμΠϜΛ࣮ূ͢ΔΑ͏ͳσδλϧϑΝϒϦέʔγϣ ϯͱ޻ܳΛ૊Έ߹ΘͤΔΞϓϩʔνͷఏҊɻ'SFF%͸ख࣋ͪͷσδλϧூࠁσόΠεͰɼίϯϐϡʔλͰ؂ࢹ͞Εɼ ੡࡞ऀ͸ࣗ༝ʹૢ࡞Ͱ͖Δɻ͋Β͔͡Ίઃܭ͞Εͨ%Ϟσϧʹج͍ͯɼΦϒδΣΫτͷଛইͷϦεΫ͕௿͍ͱ͖ ʹͷΈಈ࡞͢Δ ਓؒͱίϯϐϡʔλͷ྆ํʹΑͬͯੜΈग़͞Εͨ৽͍͠ϋΠϒϦουྖҬΛཱ֬͠ɼ੡଄ϓϩηεʹ͓͚Δओ؍ తҙࢥܾఆΛऔΓೖΕɼσβΠϯͱϑΝϒϦέʔγϣϯͷؒͷઢΛ͍͋·͍ʹ͢Δɻ޻ܳ඼ΛσδλϧྖҬʹಋೖ ͢Δ 'SFF%͸ɼσβΠφʔ͕৽͍͠ํ๏Ͱݪࡐྉʹ;ΕΔͱಉ࣌ʹɼ૑଄ͷաఔͷҰ؀ͱͯ͠ݮࢉతϑΝϒϦέʔγϣ ϯΛ౷߹͢Δ͜ͱ͕Ͱ͖Δɻख࣋ͪͷூࠁπʔϧͱ౷߹͞Εͨσδλϧػೳ͕ɼෳࡶͳ%ΦϒδΣΫτΛூࠁ͢ Δࡍʹɼܦݧͷઙ͍$"%σβΠφʔΛࢧԉ͢Δ৽ٕज़ͷఏҊɻਓؒͷओ؍ੑͱػցͷࣗಈੜ࢈Λ༥߹ͨ͠ɻ යࢠҁՖ ਓؒίʔε   
  99. Laser Cooking: a Novel Culinary Technique for Dry Heating using

    a Laser Cutter and Vision Technology - CEA’12 Kentaro Fukuchi, Kazuhiro Jo, Akifumi Tomiyama, Shunsuke Takao (Meiji Univ., Institute of Advanced Media Arts and Sciences, Tokyo Univ. of the Arts) "CTU *OUSPEVDUJPO $PODMVTJPO ס೤ௐཧػثͱͯ͠ϨʔβʔΧολʔΛ༻͍ͨ৽͍͠ௐཧٕज़ɻίϯϐϡʔλ੍ޚͷϨʔβʔΧολʔͱը૾ॲཧ ٕज़Λ࢖༻ͯ͠ɼܗঢ়΍૊੒ʹԠͯ͡ࡐྉΛௐཧ͠ɼ৽͍͠ຯ΍ςΫενϟʔɼ૷০ɼ*%ΛூࠁՄೳɻค຤࠭౶ Λ༻͍ͨ৯༻ூࠁΛ࡞੒͢Δଟ૚%ϓϦϯτٕज़ͷఏҊɻ ݱ୅ͷྉཧͰ͸ɼߴ౓ͳՊֶٕज़Λ࢖ͬͯ৽͍͠ຯΛ࣮ݱ͍ͯ͠Δɻۙ୅తͳྉཧ΁ͷΞϓϩʔν͸ɼ৘ใٕज़ ͱϝΧτϩχΫεΛ׆༻͍ͯ͠Δɻ୹࣌ؒͰہॴతʹ੒෼ΛՃ೤͢Δ͜ͱ͕Ͱ͖Δ-BTFS$PPLFS͸طଘͷՃ೤ํ ๏Λஔ͖׵͑Δ͜ͱ͕໨తͰ͸ͳ͘ɼ৽͍͠ຯͱ৯ମݧΛ୳ٻ͢ΔΑ͏ઃܭ͞Ε͍ͯΔ ύʔιφϧϑΝϒελΠϧͱը૾ॲཧͷ૊Έ߹ΘͤʹΑΓɼߴ౓ͳࣗಈௐཧ͕ՄೳʹͳΓɼຯͱςΫενϟͷ৽͠ ͍Մೳੑ͕ੜ·ΕͨɻϨʔβʔௐཧثͷ࣮૷͸ਐߦத͔ͭࢼߦࡨޡͷஈ֊Ͱ͋Δɻ යࢠҁՖ ਓؒίʔε   
  100. Hybrid Basketry: Interweaving Digital Practice within Contemporary Craft - SIGGRAPH’13

    Art Gallery AMIT ZORAN (MIT Media Lab) "CTU *OUSPEVDUJPO $PODMVTJPO ݱ୅ͷ%ҹ࡮ͱ఻౷޻ܳΛ༥߹ɻ̏%ϓϦϯτߏ଄͕ख৫Γύλʔϯͷ৳௕΍ൃలΛՄೳʹ͢ΔΑ͏ͳܗΛͯ͠ ͍ΔϋΠϒϦουόεέοτϦʔΛ։ൃͨ͠ɻ%ϓϦϯτ͞ΕͨϓϥενοΫͷཁૉ͸σδλϧۂ཰ͱϚχϗʔ ϧυͷඒֶʹߩݙ͠ɼख৫Γͷѵɼδϡʔυ౳͸ಠಛͷ༗ػతັྗͰόεέοτΛຬͨ͢ɻݱ୅తͳσβΠϯͱ੡ ࡞ͷΞϓϩʔνʹ͓͚Δ޻ܳͱ఻౷ͷࡏΓํʹ͍ͭͯͷਂ͍ٞ࿦ σδλϧ੡࡞͸޻ܳ඼ͷ෺ཧతՁ஋ʹେ͖ͳӨڹΛ༩͑ΔɻσδλϧͰઃܭ͞Εͨ޻ܳ඼͸ຊ࣭తʹ࠶ݱՄೳͰ͋ Δ͕ɼରরతʹɼ఻౷తͳ޻ܳ඼͸શ͘ಉ͡σβΠϯͷ܁Γฦ͠͸΄ͱΜͲෆՄೳɻഁյ͞Εͨ΋ͷΛ෮ݩ͢Δ ϓϩηεͰɼσδλϧ޻ܳΛ૊ΈࠐΉ͜ͱͰ৽͍͠΋ͷ͕ੜ੒͞ΕΔɻ ৽͍͠σδλϧٕज़ͱ఻౷తͳख࡞ۀͷٕज़Λ୳ٻͨ͠ɻػց͸੍ޚͱΠϊϕʔγϣϯͷੜ੒ثɼਓؒͷख࡞ۀɼ ܳज़తੜ࢈ͱจԽͷอޢͱͯ͠ɼσδλϧͱ఻౷ͷۃੑʹ͍ͭͯͷ৽͍͠ߟ͑ํΛ։ൃ͢ΔɻσδλϧจԽɼσβ Πϯͱ੡଄ͷαΠόʔεϖʔεͰࣦΘΕͨ෺࣭తΞΠσϯςΟςΟΛ࠶ར༻͢ΔՄೳੑ͕͋Δɻ යࢠҁՖ ਓؒίʔε   
  101. HeartChat: Heart Rate Augmented Mobile Messaging to Support Empathy and

    Awareness ƒ”‹ƒ ƒ••‹„ǡƒ‹‡Ž—•…Š‡ǡƒ™‡ÏǤ‘œƴniak, Florian Alt ˑThe ACM CHI Conference on Human Factors in Computing Systems HeartChat ͮͱʃ ϟριʖζͳͳ΍Ͷৼധ਼Νૻ৶ͤΖ͞ͳ͗Ͳ͘ΖϠώ΢ϩοϡρφΠϕϨίʖεϥϱɽ ՁͲ HeartChat? ॊཔ͹τΫηφͫ͜͹αϝϣωίʖεϥϱΠϕϨͲͺ૮घ͹ৼ৚Νཀྵմ͢ͰΔ͏͹Ͳɼ اช࣊ΏηνϱϕΏժ଀Νૻ৶ͤΖେΚΕͶਫ਼ରυʖνͲ״৚ΝනݳͤΖɽ ʹ͑Ώͮͱʃ
  102. 1)ϟριʖζૻ৶࣎͹ৼധ਼ͶΓͮͱϟριʖζΝ৯෉ͤ͜Ζ HeartBubbles 2)͕ޕ͏͗Ψϱϧ΢ϱ͹࣎ͶϨΠϩν΢ϞͲৼധ਼ΝනࣖͤΖ HeartLight 3)ϚνϱΝԣͪ࣎͢Ͷৼധ਼Νૻ৶ͤΖ HeartButton ͹ࢀझྪΝࢾ͢ͱΊΖɽ ࣰݩͺ 7 ૌ

    14 ໌Ͷ 69 ೖؔ࢘༽͢ͱ΍Δ͏ɼͨ͹״૟ΝΠϱίʖφͪ͢ɽ ݃Վ:ؽ೵ڠ௪ ʀৼധ਼Νૻ৶ͤΖ͞ͳͺ״৚Ώชຼ೟ࣟͶༀཱིͬɼֺ͢͠͹໚Ͳ΍ॊཔ͹ΠϕϨίʖε ϥϱΓΕ΍৏յͮͱ͏Ζͳ͏͑υʖν͗ಚΔΗͪɽ ʀৼധ਼ͶΓͮͱϏʖφψʖ͗ʹ͞ͲՁΝ͢ͱ͏Ζ͹͖͗ਬ଎Ͳͪ͘ɽ ʀ޹͘͵ৱ΄෼Ώ෼ࣆͶͯ͏ͱ࿫ͤ࣎Ͷৼധ਼͗৏ত͢ͱ͏ͪɽ ʀΉͪࣙ෾ࣙਐ͹ৼധয়ڱΝஎΖ͞ͳͲࣙހ؏ࡱΏηφϪη͹ݬҾΝಝఈͤΖ͞ͳͶ΍ༀ ཱིͮͪɽ ʀύʖφοϡρφͺՊଔΏ਎ື͵༓ਕͳ͹ཤ༽͗๮Ή͢͏ɽ ݃Վ:֦ؽ೵พ ʀHeatrBubbles ͗࠹΍ֺ͚͢ɼϏʖφψʖ͹ৼ৚Νཀྵմ͢Ώͤ͏ͳ͏͑Πϱίʖφ݃Վɽ ʀHeartBubbles ͺ৯ͶΓΖනࣖ͵͹Ͳɼ਼࣊ͳർ΄ͱඏຽ͵ৼധรԿ͗෾͖ΕͶ͚͏ɽ ʀHeartButton ͗࠹΍໎ྐͲմए͹༲ҝ੓͍͗ͮͪͳ͏͑Πϱίʖφ݃Վ͍͗Εɼ෾ੵ͹ ݃ՎͲ΍ଲ࿫ं͹য়ସͶଲͤΖқࣟ͹༙қ͵ଁՅ͗೟ΌΔΗͪɽ ʀHeartButton ͺࣙਐ͗໎ࣖదͶৼധ਼Νૻ৶ͤΖͪΌɼͨ͹਼࣊͹қັ͗ଠ͹̐ؽ೵Γ Ε΍༙қٝͶ״ͣΔΗͪɽ ʀHertsLight ͺϏʖφψʖ͗ϟριʖζΝಣΞͲ͏Ζ࣎͹ৼധ਼ΝஎΖ͹Ͷༀཱིͮͪɽ
  103. ࢂߡชݛ͹ sur vey Daniel Buschek, Alexander De Luca, and Florian

    Alt. 2015. There is More to Typing Than Speed: Expressive Mobile Touch Keyboards via Dynamic Font Personalisation. In Proceedings of the 17th International Conference on Human- &RPSXWHU,QWHUDFWLRQZLWK0RELOH'HYLFHVDQG6HUYLFHV 0RELOH+&,b . ACM, New York, NY, USA, 125Ȃ130. DOI: http://dx.doi.org/10.1145/2785830.2785844 ν΢ϒϱήͺΦϧʖིΏଐౕ͵ʹ͹ఈྖద͵གྷҾͶؖ͢ͱݜڂ͠Ηͱ͏Ζ͗ɼTapScript Νཤ༽͢ͱɼν΢ϒϱή࣎͹Ϥʖδʖ͹ߨಊΏชຼɼࢨ͹ഓ஖Ώυώ΢η͹޴͘Ώಊ͘͵ ʹ͖Δɼν΢ϒϱήͶݺ੓దಝ௅Ν࣍ͪͦΖघॽ͘͹Γ͑͵ϓΧϱφ͹ਫ਼੔Νߨ͵ͮͪɽ ν΢ϒηφͳͨ͹ν΢ϒϱήͶΓΕਫ਼੔͠ΗͪϓΧϱφ͹ૌ͹ಝఈིͺ 84.5%Ͳɼν΢ϒ ϱή࣎Ͷิͮͱ͏͖ͪ࠴ͮͱ͏͖ͪ͹ਜ਼մིͺ 94.8%ͫͮͪɽ͞ΗͲɼݺਕ͹ν΢ϒϱή ͹ಝ௅ͶΓΕਫ਼੔͠ΗͪϓΧϱφͶͺݺ੓ద͵ಝ௅͍͗Ζͳ೟ࣟ͠Ηͪɽ Franco Curmi, Maria Angela Ferrario, Jen Southern, and Jon Whittle. 2013. HeartLink: Open Broadcast of Live Biometric Data to Social Networks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems &+,b . ACM, New York, NY, USA, 1749Ȃ1758. DOI: http://dx.doi.org/10.1145/2470654.2466231 ώ΢ΨϟφϨρέυʖνΝࣙਐ͹݊߃؇ཀྵΏφϪʖωϱή͹ͪΌͶཤ༽ͤΖҐ֐Ͷɼλʖ εϡϩϋρφϭʖέͶ͕͏ͱڠ༙ͤΖͳ͏͑Ն೵੓Ͷͯ͏ͱɼৼധ਼͵ʹ͹ώ΢ΨϟφϨ ρέυʖνΝϨΠϩν΢ϞͲफॄ͢ɼΨϱϧ΢ϱͲϔϫʖχΫϡηφͤΖ HeartLink Ν֋ ൅ͪ͢ɽ ਫ਼ରυʖν͹ࢻְԿͺυʖν͹఑ڛंͳࢻ௎ं͹ؖܐͶӪڻΝ༫͓ɼ ఑ڛंͺࢻ௎ ंͶۛͰ͏ͪ໪ત͹৚ๅ൅৶Νߨ͏ɼࢻ௎ंͺಋҲ͹αϝϣωτΡͶ଒͢ͱ͏Ζͳ͏͑қ ࣟ͗کΉͮͪɽώ΢ΨϟφϨρέυʖν͹ڠ༙ͺਕؔؖܐͶӪڻΝ༫͓Ζ͞ͳ͗Κ͖ͮͪ ͪΌɼ৿͢͏ϑζϋηϠυϩΏαϝϣωτΡ͹ߑ஛ͶనԢͲ͘ΖՆ೵੓͍͗Ζɼ Joan Morris DiMicco, Vidya Lakshmipathy, and Andrew Tresolini Fiore. 2002. Conductive Chat: Instant messaging with a skin conductivity channel. In Proceedings of Conference on Computer Supported Cooperative Work. Citeseer. Conductive Chat ͺϤʖδʖ͹รಊͤΖϨΠϩν΢Ϟ͹ൿේ͹ఽ಍ౕΝξ΢Πϫή΢ϱν ʖϓΥ΢ηͶૌΊࠒ΋΢ϱηνϱφϟριʖζϱή΢ϱνʖϓΥ΢ηͲ͍ΖɽτΫηφο ϡρφ͹ଲ࿫͹஦ͶϤʖδʖ͹ڷฅౕɼְ੩ౕΝ؜ΌΖ͞ͳͶΓͮͱ״৚ద͵αϱτϱς
  104. Νึͮͱ͏Ζɽ ͞͹ݜڂ྘Үͺɼ ৚ॻద৚ๅ͗αϱϒϣʖνഖղ؂ڧͶ͕͜Ζཋٽͳқਦ͹ ڠ༙Ν͏͖Ͷ๝͖ͶͤΖ͖ΝཀྵմͤΖ͞ͳΝ໪దͳ͢ͱ͏Ζɽ Rana El Kaliouby and Peter Robinson.

    2004. FAIM: Integrating Automated Facial Affect Analysis in Instant Messaging. In Proceedings of the 9th International Conference on –‡ŽŽ‹‰‡–•‡” –‡”ˆƒ…‡•ȋ  ǯͶͺȌ. ACM, New York, NY, USA, 244Ȃ246. DOI: http://dx.doi.org/10.1145/964442.964493 ఽ౹ద͵΢ϱηνϱφϟριʖζϱήϕϧρφϓΧʖϞͺɼනݳ͹कགྷ͵ܙࣞͳ͢ͱτΫ ηφϟριʖζͶғଚ͢ͱ͏Ζɽ FAIM ͺϨΠϩν΢ϞͲਕ͹اΝ෾ੵ͢ɼ ͨΗΝනݳͤΖ ״৚ద͵ΫϡϧένʖΝౌ৖ͦ͠Ζ͞ͳͲଲ࿫ΝکԿͤΖɽ͞͹࿨ชͲͺاΝ෾ੵ͢Πϕ ϨͶ౹߻ͤΖࡏ͹અܯ৏͹՟ୌͳͨ͹ଲॴͶͯ͏ͱफ़΄ͱ͏Ζɽا͹න৚ͺೖ৙ద͵αϝ ϣωίʖεϥϱͶ͕͏ͱ΍॑གྷ͵ༀׄΝՎͪ͢ͱ͏Ζɽ FAIM ͹ӪڻΝ਼஍Կ͢ɼ ΓΕྒྷ͏ ΍͹΃ͳրવ͢ͱ͏͚͞ͳ͗๮ΉΗΖɽ Ke-Chen Pong, Chi-An Wang, and Shuo Hsiu Hsu. 2014. GamIM: Affecting Chatting Behavior by Visualizing Atmosphere of Conversation. In  ǯͷͺš–‡†‡†„•–”ƒ…–•‘ —ƒ ƒ…–‘”•‹‘’—–‹‰›•–‡•ȋ ǯͷ4). ACM, New York, NY, USA, 2497Ȃ2502. DOI: http://dx.doi.org/10.1145/2559206.2581168 Ϡώ΢ϩυώ΢ηΝղͪ͢΢ϱηνϱφϟριʖζ͹ި׷Ͷ͕͏ͱɼτΫηφ͖Δ״৚ద ͵घ͖͗ΕΝଁکͤΖاช࣊͵ʹ͹ॊཔ͹శ෉෼ͺɼ್ਕ͹ଲ࿫ं͹ؔ͹ճ࿫͹ฉҕـΝ ࢻְԿͤΖ͞ͳ͗Ͳ͘͵͏ɽ GamIM ͺૻ৶͠ΗͪϟριʖζΝφϪʖωϱή͠Ηͪ෾ྪح ͶΓͮͱ෾ੵ͢ͱਜ਼ɼ ෝɼ ஦ཱིͶ෾ྪͨ͢͹״৚Ͷ߻Κͦͱ৯෉͘͹๒Νਫ਼੔͢ͱճ࿫͹ฉ ҕـΝࢻְԿͤΖɽ ๒ͺϟριʖζ͹बว͖Δ൅ਫ਼͢ɼ ͨ͹ޛժ໚৏๏͹୉ـ྘ҮͲࢯΉΖ ͪΌعଚ͹๒ͳ૮ޕࡠ༽ͤΖɽ͞͹Γ͑͵ΰʖϞదΠϕϫʖοͲ͍Ζ״৚͹๒͹࢔ཻͳ૮ ޕࡠ༽ͺɼ ϤʖδʖͶճ࿫஦Ͷ൅ਫ਼ͪ͢״৚͹ྖΝࢧ͏ड़ͦ͠ɼ ઞࡑదͶϤʖδʖ͹οϡρ φಊࡠͶӪڻΝٶ·͢ɼΓΕ੷ۅద͵ճ࿫ΝଇͤͳՀఈ͠ΗΖɽ 201611460 ኏ੋܔ৑ (ਕؔαʖη)
  105. Learning to be a Depth Camera for Close-Range Human Capture

    and Interaction Sean Ryan Fanello Cem Keskin Shhram Izadi Pushmeet Kohli David Kim David Sweeney Antonio Criminisi Jamie Shotton Sing Bing Kang Tim Paek Microsoft Research iCub Facility - Institute Italiano di Tecnologia %ͷ8FCΧϝϥʹ੺֎ઢϥΠτΛ͚ͭػցֶशͰख΍ إͷೝࣝΛ͢Δ͜ͱͰ҆ՁͰߴੑೳͳ%ਂ౓ΧϝϥΛ ࡞੒ͨ͠ɻ ैདྷͷਂ౓ΧϝϥΑΓফඅిྗ͕௿͍҆͘ɻ·ͨΧϝ ϥͷௐ੔΍ΩϟϦϒϨʔγϣϯΛඞཁͱ͠ͳ͍ɻ .VMUJMBZFSFE'PSFTU"SDIJUFDUVSFͱ͍͏ֶशํͰ ө૾ͷਂ౓ਪఆΛ͢Δɻ ಘΒΕͨਂ౓৘ใΛٯೋ৐ͷ๏ଇΛ࢖༻ͯ͠ಘΒΕͨ σʔλͱൺֱ͠े෼ͳਫ਼౓Ͱ͋Δ͜ͱ͕֬ೝ͞Εͨɻ ഽͷ৭΍؀ڥޫʹΑͬͯਂ౓ਪఆʹӨڹ͕ग़ΔɻΧϝ ϥΛվ଄ ੺֎ઢϑΟϧλʔͷআڈ ͢Δ͜ͱͰ௨ৗͷ࢖ ༻͕Ͱ͖ͳ͘ͳΔɻ KESKIN, C., KIRAC ̧ , F., KARA, Y., AND AKARUN, L. 2012. Hand pose estimation and hand shape classification using multi-layered randomized decision forests. In Proc. ECCV. 201813567 দӬঘ೭ #FTMA18 (ਓؒ) ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ
  106. Category-Specific Object Reconstruction from a Single Image Abhishek Kar∗ ,

    Shubham Tulsiani∗ , Joao Carreira and Jitendra Malik ˜ University of California, Berkeley - Berkeley, CA 94720 ̍ຕͷը૾͔Β͍ࣸͬͯΔΦϒδΣΫτͷ̏࣌ݱঢ়ͷ ܗΛࣗಈੜ੒͢Δٕज़ɻػցֶशͰ͋ΔΦϒδΣΫτ ͷࣸਅΛ͋ΒΏΔ֯౓͔ΒͱΓɺͦͷσʔληοτΛ ݩʹ̎࣍ݩը૾͔Β̏࣍ݩϞσϧΛੜ੒͢Δɻ Estimating Human Shape and Pose from a Single Image Peng Guan Alexander Weiss Alexandru O. B˘alan Michael J. Black Department of Computer Science, Brown University, Providence, RI 02912, USA ࣸਅ΍ֆ͔ΒਓؒͷϙʔζΛݕग़̏͠%Ϟσϧͱͯ͠࠶ ߏ੒͢Δɻਓମͷ̏%Ϟσϧσʔλϕʔε͔ΒϞσϧΛ ੜ੒͠ɺը૾ղੳͰ͍ࣸͬͯΔਓମͷؔઅͷಛ௃఺Λ ݕग़ͯ͠ϙʔζΛਪఆ͢Δɻͦͯͦ͠ΕΒͷ৘ใΛ૊Έ ߹ΘͤͯͦͷਓؒͷϙʔζΛ̏%ϞσϧͰද͢ɻ 201813567 দӬঘ೭ #FTMA18 (ਓؒ)
  107. Real Time Hand Pose Estimation using Depth Sensors Cem Keskin,

    Furkan Kırac¸, Yunus Emre Kara and Lale Akarun Bogazic¸i University ˘ Computer Engineering Department, 34342, Istanbul, Turkey ਂ౓Χϝϥ͔ΒಘΒΕͨखͷը૾Λऔಘ͠ɺػցֶश ͔ΒಘΒΕͨϋϯυδΣενϟʔΛਪఆ͢ΔͨΊͷσʔ λϕʔεΛࢀরͯ͠ɺϦΞϧλΠϜͰϋϯυδΣενϟʔ Λೝࣝ͢Δɻ Multi-spectral SIFT for Scene Category Recognition Matthew Brown and Sabine Susstrunk ¨ School of Computing and Communication Sciences, Ecole ´ Polytechnique Fed´ erale ´ de Lausanne (EPFL). ௨ৗͷσδλϧΧϝϥ͔ΒऔΓࠐ·Εͨ੺֎ઢ৘ใΛ ׆༻ͯ͠Χϥʔ4*'5ͷೝࣝੑΛ޲্ͤ͞Δ.4*'5ͱ͍ ͏ख๏ΛߟҊͨ͠ɻ 201813567 দӬঘ೭ #FTMA18 (ਓؒ)
  108. Multiview Face Capture using Polarized Spherical Gradient Illumination Abhijeet Ghosh

    Graham Fyffe Borom Tunwattanapong Jay Busch Xueming Yu Paul Debevec USC Institute for Creative Technologies ภޫٿ໘ޯ഑র໌Λ༻͍ͯෳ਺ͷࢹ఺͔Βղੳ͢Δ͜ ͱͰߴղ૾౓͔ͭڸ໘ޫ౓৘ใΛ࣋ͬͨإͷزԿֶత ܗঢ়Λऔಘ͢ΔɻΧϝϥͱޫݯͷ྆ํʹ௿ίετͷੑ తภޫࢠΛ࢖༻ͯͨ͠ࢹ఺Λऔಘ͢Δɻ 201813567 দӬঘ೭ #FTMA18 (ਓؒ)
  109. <I=C?( <,D89—w7;t‚36( †yus;A9<0-41+( q€D–?Od@<0( r›@*G( }>ŽBA.›”@(  PfM^W)TjQ?‹kS)_)H“| aiZPYN)jH˜+6PfM^W)TjQ? TU[cHEFƒ{>'’x/o˜:.GE,p

    VOeg[K?z2;ŒRU]l " #„>W`]MNJbi]XLbH~‡39' Š? :nˆ?XQ‘?…H[U]39m v•?XUP>‰39w™?š+d\h-*F5, "# !" #"#"&! %#" $ " # &!!#""!"&"#"& %#
  110.          

      NY)O[)<L:L7(Z!/3L<L>2BWP*-'3L<L>2BWP% # H9\T%CI=@A4E\T)^")F?K0?93L!/ NY)O[)<L:L7*H9)DIL>21(-/,)$. <5GJ>2)J;6/)(DIL>21*]R`!$+%,'3L<L>2BWP,' CI=@A4E\T*H9SUMX$'&H9\T*;8IBK$. R_VQ#`
  111.          

     _SV3Lh 1%&Yj($1Uc$19:=A$+! ?<>D7'/1QN-,4&(TI'/"#f+  _SV'Yj3`Wi(9:=A/0-GRXg'/"#a[.0%0$!e QNV/0-^(TI 2*F]-d#1 >CE879BE)PJ2#Kk21ZO.6E;E=5@-\M$19:=A3bH+ 
  112.          D@0I3G1>96K4?;=J3$

    3G1>96K4'S']Z%?;=J3.2<3:E-WL+ 3G1>96K4'8K6K4$3G1>96K45KAF</K4'`Y&P,!"+67<C#* 82FH</)BG0@6'\V#T_'('$XO-R ?;=J3'N^$82FH</&+QM-U[ 
  113.          

        EODP1=@9:,@9(1=.9:,@8-@2';?615/@A+]M #) ;?615/@&!)%$84'30<>7-%[CUFV*) HNZ$(\YGQY&BW)KIXJLR$TS #"
  114. ShareVR: Enabling Co-Located Experiences for Virtual Reality between HMD and

    Non-HMD Users Jan Gugenheimer, Evgeny Stemasov, Julian Frommel, Enrico Rukzio 
 ).%ண༻ऀະண༻ऀ͕ಉۭؒ͡Λڞ༗Ͱ͖Δ73؀ڥ ಉ͡෦԰ʹ͍ͳ͕Β΋ɺ ະ ண༻ऀͰಉ͡ίϯςϯπ಺ ͷҟͳͬͨ73ମݧ͕Ͱ͖Δ࠷ॳͷγεςϜͰ͋Δ͜ͱ ηϯαʔ͕൓Ԡ͢ΔΤϦΞͷচʹ̎୆ͷϓϩδΣΫλʔ Λ࢖ͬͯ73ۭؒͷচΛ౤Ө͢Δ͜ͱʹΑͬͯະண༻ऀ ͕ۭؒͷڥքΛೝࣝͰ͖ΔΑ͏ʹͨ͠ 4IBSF73 HBNFQBE ).% /PO).% HBNF̎छ ͷ̔௨ΓͰ 6TFS4UVEZ (BNF&YQFSJFODF2VFTUJPOOBJSF  ݁ՌΛ౷ܭௐࠪ ).%ͷ਺Λ૿΍͢ ະண༻ऀଆͷۭؒσβΠϯΛ΋ͬͱߟ͑Δ Cheng et al 2015 201813560 ࠨํஐथ #1 (෹ίʔε) ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ $)*
  115. Guessing Objects in Context Karan Sharma , Arun CS Kumar,

    Suchendra Bhandarkar ༢ㄒᇙࡵ㎸ࡳ࣋ࢡࢺࣝࢆ⏝࠸࡚㑅ᢥࡉࢀࡓ 14✀ࡢ⏬ീࣛ࣋ࣝࢆᏛ⩦ࡋࡓࣔࢹࣝ࠿ࡽࠊ 80✀ࡢࣛ࣋ࣜࣥࢢၥ㢟ࢆゎ࠸ࡓࠋ ࡝ࢇ࡞ࡶࡢ? ඛ⾜◊✲࡜ẚ࡭࡚࡝ࡇࡀࡍࡈ࠸? ඛ⾜౛ࡢࢮࣟࢩࣙࢵࢺᏛ⩦ࡣ」㞧࡛ࢫࢣ࣮ ࣝࡋ࡟ࡃ࠸ࡀࠊࡑࡢⅬࡀᨵၿࡉࢀ࡚࠸ࡿࠋ ᢏ⾡ࡸᡭἲࡢ࢟ࣔࡣ࡝ࡇ? ༢ㄒᇙࡵ㎸ࡳ࣋ࢡࢺࣝ࠿ࡽᩥ⬦ࢆぢ࡚ྠ᫬ ࡟Ⓨ⏕ࡋࡸࡍ࠸ࣛ࣋ࣝࢆ᥎ ࡍࡿⅬࠋ ࡝࠺ࡸࡗ࡚᭷ຠࡔ࡜᳨ドࡋࡓ? microsoftࡢCOCOࢹ࣮ࢱ࣮࣋ࢫࡢࣛ࣋ࣜࣥࢢࢆ⾜ࡗࡓࠋ ㆟ㄽࡣ࠶ࡿ? 80✀඲࡚ࡢࣛ࣋ࣝ࡟ࡘ࠸࡚Ꮫ⩦ࡋࡓࣔࢹࣝࡼࡾࡣ⢭ᗘ ࡀప࠸ࡀࠊࡈࡃᑡᩘࡢ᳨ฟჾ࠿ࡽ࢖࣓࣮ࢪෆࡢ࢜ࣈࢪ ࢙ࢡࢺࢆ᥎ ྍ⬟࡛࠶ࡿࡇ࡜ࢆ♧ࡋࡓࠋ ḟ࡟ㄞࡴ࡭ࡁㄽᩥࡣ? ྠࡌࡃword2vecࢆศ㢮ၥ㢟࡟฼⏝ࡋ࡚࠸ࡿ Moe Matsuki, and Sozo Inoue, 2016 Recognizing unknown activities using semantic word vectors and twitter timestamps 201813566 ௰ᮧຬ㤿 #1(௖ࢥ࣮ࢫ) SIGGRAPH '16
  116. (PRWLRQ&RQWURORI8QVWUXFWXUHG'DQFH0RYHPHQWV (SCA17) z ʹΞ͵΍͹ʃ αϱτϱϛϧϨʖξϱη͹ಊ͘Ν RCM Ͳࣖ͠Ηͪ״৚࠴ඬΝ༽͏ͱఈࣞԿͤΖ z ઎ߨݜڂͳർ΄ͱʹ͗ͤ͟͞͏ʃ ࠕΉͲͺ͍Ζఖౕ͹υʖνॴཀྵͳϠʖεϥϱౌ࿧Νචགྷͳ͢ɼην΢ϩฦॄΝࢨࣖͤ

    ΖϤʖδʖ͹क؏ద͵ୱޢͶғଚ͢ͱ͏ͪ͗ɼφϪʖωϱήυʖν͖Δಢཱིͪ͢ಊࡠ Ͷన༽ͤΖ͞ͳ͗Ͳ͘Ζɽ z ٗढ़Ώघ๑͹ΫϠͺʃ LMA ͶΓΕඉߑଆద͵ξϱη͹״৚Νմੵ͢ɼRCM ͶخͰ͏ͪ״৚࠴ඬਦΝࡠΖ z ʹ͑Ώͮͱ༙ްͫͳݗৄͪ͢ʃ ϤʖδηνυΡͲʹ͹ఖౕ͹੠ౕͲ൓พͲ͖ͪ͘Ͳݗৄ z ٠࿨ͺ͍Ζʃ ࣙ༟ܙࣞ͹ξϱη͖Δ͹״৚೟ࣟͺɼ ࢧͮͪΓΕ΍ೋ͢͏ɽ ϠʖεϥϱΫϡϕοϡ΍͑ Ή͚͏͖͵͖͖ͮͪΔΓΕΓ͏ΫϡϕοϡεητϞΝࡠΕड़ͪ͢͏ɽ z ࣏Ͷಣ΋΄͘࿨ชͺʃ M. Ersin Yumer and Niloy J. Mitra. 2016. Spectral Style Transfer for Human Motion Between Independent Actions. ACM Trans. Graph. 35, 4 (July 2016), 137:1²137:8. 201511520 ྵ໨྆༠(ਕؔαʖη)
  117. ؖ࿊ݜڂ Flexible Registration of Human Motion Data with Parameterized Motion

    Models - ਕؔ͹ࣙಊϠʖεϥϱౌ࿧͹ͪΌ͹ްིద͵Ϡυϩϗʖη͹ΠϕϫʖοΝ఑ࣖ - ิߨɼૺߨɼζϡϱϕ͵ʹ͹ϠʖεϥϱͲࣰݩ - ߶඾࣯͹ϠʖεϥϱυʖνΝಚΖͪΌͶɼ υʖνϗʖη͹ྭΝൔࣙಊదͶࣆ઴ౌ࿧͢͵ ͜Ηͻ͵Δ͵͏ˢ͖͖࣎ؔ͗Ζ ¾ Ն೵͵մ݀ࡨʁυʖνϗʖη಼͹ঙ਼͹ྭΝൔࣙಊϕϫιηͲ༩Όౌ࿧͢ͱ͖Δɼ Ϡυϩϗʖη͹ౌ࿧ϟλρχΝ࢘༽͢ͱϏϧϟʖνԿ͠ΗͪϠυϩΝஊ֌దͶߍ ৿ͤΖ͞ͳ - গཔదͶͺΓΕଡ͚͹අݩंɼ ߶ྺं͖Δࢢʹ΍͵ʹ͹ΓΕଡ͚͹ಊ͘͹ώϨΦʖεϥ ϱΝφϪʖωϱήυʖνϗʖηͶ௧Յ - Ϡʖεϥϱ߻੔ɼѻक़ɼαʖυΡϱήɼ೟ࣟɼ͕Γ;ϓΡϩνϨϱήͶ͕͜ΖΠϕϨί ʖεϥϱ͹௒ࠬΝࠕޛΏΖ Style Translation for Human Motion - αϱτϱςΝฯଚ͢͵͗Δɼ ਕؔ͹ಊ͘Ν͠Ή͡Ή͵ην΢ϩͶો૥͚ร׷Ͳ͘ΖΓ͑ ͶͤΖ͞ͳ ¾ ๴୉͵υʖνιρφΝߑ஛ͤΖෝ୴͗୉͘͏໲ୌΝմ݀Ͳ͘Ζ - ؖઇΝಢཱི͢ͱϠυϩԿͪ͢ ¾ ೘ྙͳड़ྙ͹ࠐ֪͗ڠ௪Ͳ͵͚ͱͺ͵Δ͵͏ ¾ Shin et al ͹ retargeting Πϕϫʖο͹Γ͑͵घ๑ͳૌΊ߻ΚͦΗͻմ݀ͤΖՆ೵੓ ͍͗Ζ ¾ ੏ޜཀྵ࿨Ώͨ͹ଠ͹ؖ࿊෾໼͹෾ੵٗढ़ΝԢ༽ͤΖ͞ͳͲɼਕؔ͹ಊ͘Ͷ͕͜Ζ ην΢ϩ͹ຌ࣯Ͷͯ͏ͱ͹৿͢͏ಐࡱΝݡͯͪ͜͏ Generalizing Motion Edits with Gaussian Processes - ָ͞सεητϞ͹ҲൢԿϕϫϏτΡΝ࢘༽͢ͱɼ ୻͏φϪʖωϱήεʖίϱηͲࡠ੔͠ ΗͪรߍΝϓϩΠωϟʖεϥϱͶఽ೽ͤΖεητϞ - গཔదͶͺɼ ͞͹ٗढ़͗ϓρφϕϧϱφ͵ʹ͹؂ڧ੏༁ΝॴཀྵͲ͘Ζ͖ʹ͖͑Ν୵ڂ͢ ͱɼޛॴཀྵ͗෈གྷͶ͵ΖΓ͑Ͷͪ͢͏ Modeling Spatial and Temporal Variation in Motion Data - ӣಊυʖν͹รԿΝϠυϩԿ͢ɼ߻੔ͤΖͪΌ͹৿͢͏๏๑͹఑ࣖ ¾ ΨϨζψϩ͹ิߨγ΢έϩ͹Κ͖ͥ͵ࠫΝਫ਼੔ͤΖ͞ͳ͗Ͳ͘ΖώϨΦʖεϥϱ Ϡυϩɼड़ྙಊࡠ͹ࣙષ͠Ν୉෱ͶրવͤΖՆ೵੓͍͗Ζ - ॑གྷ͵͹ͺɼ ঙྖ͹υʖνͲཱࣙదͶϠυϩԿ͢ͱώϨΦʖεϥϱΝ߻੔ͤΖਜ਼ࣞ͵๏ ๑
  118. - ό΢θΝ௧ՅͤΖ๏๑ͺචͥ͢΍ࣙષͶ͵Δ͵͏ - ਼஍దͶͺҩͮͱ΍ݡͪ໪ͺΚ͖ͥͶҡ͵Ζ͖ͫͫ͜Δրવ͹༪ஏ͍Ε - future workˢϠʖεϥϱυʖνΝѻक़ͤΖͪΌͶώϨΦʖεϥϱ͹Π΢υΠΝ࢘༽ͤ Ζ͞ͳ Efficient Content-Based

    Retrieval of Motion Capture Data - ϛʖθ͹ࢨఈ͠ΗͪϚυΡϛ΢ϱφؔ͹شՁָదؖܐΝىफ़ͤΖ༹ʓ͵झྪ͹ఈ੓ద ಝ௅Ν಍೘͢ɼ ͞ΗΔ͹ಝ௅͗ϠʖεϥϱΫϡϕοϡυʖνηφϨʖϞ͹࣎ؔ෾ׄΝʹ ͹Γ͑Ͷ༢಍ͤΖ͖Νࣖͤ - έΦϨεψϨΨ͹ 1 ͯ͹୉͘͵఼ܿͺɼ֦έΦϨͶଲ͢ͱɼϤʖδͺɼ߶඾࣯͹ݗࡩ݃ ՎΝಚΖͪΌͶన઀͵ಝ௅Νમ୔͢͵͜Ηͻ͵Δ͵͏͞ͳ - େනద͵ྭୌ͹Ϡʖεϥϱ͖Δනݳద͵شՁָదಝ௅ΝࣙಊదͶಝఈͤΖͪΌͶɼ ౹ܯ ద๏๑Νࡀ༽ͤΖ༩ఈ
  119. 'BTU4FQBSBUJPOPG%JSFDUBOE(MPCBM$PNQPOFOUTPGB4DFOFVTJOH)JHI'SFRVFODZ*MMVNJOBUJPO "$.50(/BZBS 4ISFF,BOE,SJTIOBO (VSVOBOEBOBOE(SPTTCFSH .JDIBFM%BOE3BTLBS 3BNFTI (MPCBM*MMVNJOBUJPOͱ%JSFDU*MMVNJOBUJPOΛ੾Γ෼͚Δ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ΊͪΌΊͪΌগͳ͍ը૾਺Ͱ੾Γ෼͚Λߦ͑Δ

    ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࠨ͔Β̎൪໨ͷਤ͕؊ͰɼJʹCJOBSZJMMVNJOBUJPOQBUUFSOΛ౰ͯ ͳ͍ͱ͖͸ɼJ͔Βͷ൓ࣹ͸HMPCBMJMMVNJOBUJPOͷΈͰɼJʹরࣹ͢ Δ৔߹͸HMPCBM EJSFDU Αͬͯɼ C  B Λ͢ΔͱHMPCBM͚ͩΛநग़Ͱ͖Δ ͜ΕΛԠ༻తʹ࣮ߦ͢Ε͹ΫΦϦςΟߴ͘Ͱ͖Δ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ͍ΖΜͳࣸਅʹద༻ͨ͠ ٞ࿦͸͋Δʁ ̍ࢹ఺͔Βͩ͠ɼಈతͳ΋ͷʹͲ͏͢Μͷͱ͔ղ૾౓ײͱ͔ ཧ࿦తʹ͸ຕͱ͔ͷը૾Ͱ͢Ή͸͕ͣɼ࣮༻্΋ͬͱଟ͘ ͷը૾͔Βੜ੒͢Δඞཁ͕͋Δͱ͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ ͜ͷ࿦จΛҾ༻͍ͯ͠Δ࿦จ 5IF7JTVBM$PNQVUJOHPG1SPKFDUPS$BNFSB4ZTUFNT 3FDPWFSJOHUISFFEJNFOTJPOBMTIBQFBSPVOEBDPSOFSVTJOHVMUSBGBTUUJNFPGqJHIU JNBHJOH 4ISFF,/BZBS 4ISFF,/BZBS J ͔Β൓ࣹ͍ͯ͠Δ΋ͷ͸ HMPCBMJMMVNJOBUJPO൓ࣹޫͳͲ௚઀ޫҎ֎ͷ΋ͷͷΈ J ͔Β൓ࣹ͍ͯ͠Δ΋ͷ͸ HMPCBMJMMVNJOBUJPO EJSFDUJMMVNJOBUJPO ௚઀ޫ΋ؚΊͨ྆ํ ͭ·Γɼ C  B Λ͢ΔͱɼEJSFDUJMMVNJOBUJPO ʹΑΔ΋ͷͷΈ͕࢒Δͱ͍͏͜ͱ B C
  120. 0$5ʹJOTQJSFE͞Εͯͯɼ.JDIFMTPOJOUFSGFSPNFUSZΛԠ༻ EFQUITDBOOJOH EJSFDUHMPCBMTFQBSBUJPO NBUFSJBMTDBOOJOH FUD ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ΑʔΘ͔ΒΜ͕ɼޫֶճ࿏΋ҧ͏͠ɼNJDSPOTDBMFͰࣝผͰ͖ ΔΑ͏ʹըૉʹ߹ΘͤΔ޻෉͕͞Ε͍ͯΔͱ͜Ζ͕͍͢͝͸ͣ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ

    ޫֶճ࿏ͷઃܭख๏ͱɼܭଌɾWJTVBMJ[Fͷ෦෼ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ৭ʑͳ෺ମʹద༻ͨ͠ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ ຊ࿦จͷඃҾ༻࿦จ 4PMWJOHUSJHPOPNFUSJDNPNFOUQSPCMFNTGPSGBTUUSBOTJFOUJNBHJOH 0DDMVEFE*NBHJOHXJUI5JNFPG'MJHIU4FOTPST Micron-Scale Light Transport Decomposition Using Interferometry (ACM TOG 2015; Gkioulekas, Ioannis and Levin, Anat and Durand, Fr{\'e}do and Zickler, Todd)
  121. ߏ଄৭ʹؔ͢Δ3FWJFX࿦จ ബບׯবɼଟ૚ׯবɼϑΥτχοΫΫϦελϧΛ࢖͏ ࣗવքͰ͸ϞϧϑΥ௏ɾλϚϜγɾΫδϟΫɾௗʹଘࡏɽΧϝϨ ΦϯͳΜ͔͸ಈత ਓ޻ͷ΋ͷͱͯ͠ϞϧϑΥ௏ͷӋͱಉ͡Α͏ͳߏ଄Λ࡞ͬͨΓ ਓ޻తʹଟ૚ͷׯবϨΠϠΛ࡞ͬͨΓ ίϩΠυঢ়ͷϑΥτχοΫΫϦελϧ φϊཻࢠ Λར༻ͨ͠Γͨ͠ ·ͨੜ෺ͷߏ଄৭͸ݟΔ֯౓ʹΑͬͯ৭͕มԽ͢Δ೒৭λΠϓ͕

    ଟ͍ˠ֯౓ґଘ͠ͳ͍ߏ଄৭ʹ୯৭ߏ଄৭ͷ੡଄΋໨ࢦ͞Ε͖ͯͨ ·ͨਓ޻తͳՄมߏ଄৭ MJLFΧϝϨΦϯ ΋࡞ΒΕ͖ͯͨ 67রࣹ ͷPO P⒎౳ʹΑΔ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ "SUJpDJBM4USVDUVSBM$PMPS1JYFMT"3FWJFX Structural colors: from natural to artificial systems (Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2016, Fu, Yulan and Tippets, Cary A and Donev, Eugenii U and Lopez, Rene)
  122. ߏ଄৭ʹؔ͢Δ3FWJFX࿦จ 1IPUPOJD$SZTUBMT͔Β1MBTNPOJD/BOPTUSVDUVSFTʹτϨϯυ͕มԽ͖ͯͨ͠ 1IPUPOJD$SZTUBMTͷྫ ൓ࣹܕ1IPUPOJD$SZTUBMT$PMPS'JMUFS%QIPUPOJDTDSZTUBMʹΑ࣮ͬͯݱ 1MBTNPOJDͷྫ ಁաܕ1MBTNPOJD$PMPS'JMUFSಉ࣠ͷߜΓͷ෯Λม͑Δ͜ͱͰ৭ΛมԽ͞ ͤΔ͜ͱ͕Ͱ͖ͨ ൓ࣹܕ1MBTNPOJD$PMPS'JMUFSۜφϊϩουʹΑΓ࣮ݱ ֯౓ґଘ$PMPS'JMUFSۚφϊϩουΛར༻ͨ͠ྫ ਂ͞ʹΑΓҟͳΔ$PMPS'JMUFSQMBTNPOͷܗ੒ʹ͓͍ͯΤονϯάͷਂ͞

    ʹΑΓͦΕͧΕΛҟͳΔ৭ʹ͢Δ͜ͱΛ࣮ݱ ಈతʹมԽ͢Δ1MBTNPOJD$PMPS'JMUFSӷথΛ༻͍ɼ67ʹΑΔύϯϓϥΠ τͰੑ࣭ʹ৭ΛมԽͤ͞Δ QVNQQSPCFख๏ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ "CTFODFPG3FE4USVDUVSBM$PMPSJO1IPUPOJD(MBTTFT  #JSE'FBUIFSTBOE$FSUBJO#FFUMFT Artificial Structural Color Pixels- A Review (Materials 2017, Zhao, Yuqian and Zhao, Yong and Hu, Sheng and Lv, Jiangtao and Ying, Yu and Gervinskas, Gediminas and Si, Guangyuan)
  123. ͸͖ͬΓͱͨ͠੺৭ʹ೾௕ͷ௕͍ߏ଄৭͕ϑΥτχΫεΨϥεͳͲͰ͸ଘࡏ͠ͳ͍ ϞσϧΛ࡞ͬͯݱࡏੜ੒͖ͨͨ͠΋ͷͱͷϚονϯάΛࣔ͠ɼ੺৭Λग़͢ߏ଄৭ͷ ͨΊͷߏ଄ͷఏҊσβΠϯ·Ͱߦ͍ͬͯΔ ࠷ऴࢼ࡞͸ͳ͠ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ೾௕ͷ௕͍ɼ֯౓ґଘ͠ͳ͍੺৭ߏ଄৭͸ݚڀͰใࠂ͞Ε͖ͯͯ͸͍Δ͕ɼ৭૬͕ශ૬ɽࣗ વքͰ΋رগɽ ͦΕΛϞσϧΛ࡞੒ͯ͠෼ੳతʹࣔ͠ɼ͞Βʹ੺৭ߏ଄৭ͷͨΊͷσβΠϯ·Ͱߦͬͨ఺ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ

    ͦΕͧΕͷཻࢠ͔Βͷޫͷ֦ࢄΛGPSNGBDUPSͱ͠ɼཻࢠ͔Βͷ೾ͷׯবΛTUSVDUVSFGBDUPS ͱ͢ΔΑ͏ͳɼ̎ͭͷ෼཭తͳϓϩηεͷ݁Ռͱͯ͠ͷTJOHMFTDBUUFSJOHNPEFMΛ૊Έ্͛ ͨ ͜ͷϞσϧ͔Βɼ੺৭ߏ଄৭Λग़ͨ͢Ίʹ͸ɼίΞγΣϧߏ଄ʹ͓͍ͯɼONͷۭؾΛ DPSFͱ͠ɼONͷγΣϧΛTJMJDBͰܗ੒͢Δͷ͕͍͍ͱσβΠϯͨ͠ɽ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ϞσϧͰܭࢉͨ͠਺஋ͱɼ࣮ࡍͷϚςϦΞϧͷ਺஋Λൺֱ ٞ࿦͸͋Δʁ ੺৭ߏ଄৭͸σβΠϯ௨Γʹ࡞ͬͨΒຊ౰ʹ࣮ݱ͢Δͷʁ Ϟσϧͱσʔλͷࠩ෼͸ͲΕ͘Β͍͍͍΋ͷͳͷʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ %FTJHOBOETJNVMBUJPOPGPNOJEJSFDUJPOBMSFqFDUJWF DPMPSpMUFSTCBTFEPONFUBMEJFMFDUSJDNFUBMTUSVDUVSF Absence of Red Structural Color in Photonics Glasses, Bird Feathers and Certain Beetles (arXiv 2014, Magkiriadou, S., Park, J. G., Kim, Y. S., & Manoharan, V. N. )
  124. NFUBMEJFMFDUSJDNFUBMͱ͍͏αϯυ΢Οονߏ଄Λ༻͍ͨ֨ࢠঢ়ͷ൓ࣹܕ $PMPS'JMUFSͷ࡞੒ ද໘ϓϥζϞϯڞ໐ͷݪཧʹج͍ͮͯ൓ࣹ͍ͯ͠Δ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ޫͷೖࣹ֯ʹରͯ͠ɼ൓ࣹ͢Δ৭ͷมԽ͕΋ͷ͘͢͝খ͍͞ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ξϧϛχ΢ϜͱγϦΧ ೋࢎԽέΠૉ ͷαϯυ΢Οονߏ଄

    ʹΑΔ൓ࣹϑΟϧλʔͷੜ੒ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞੒ͨ͠:FMMPX .BHFOUB $ZBOͷΧϥʔϑΟϧλʔʹ ೖࣹ֯Λม͑ͳ͕ΒޫΛ౰ͯɼݟ͑Δ৭ͷมԽΛ͔֬Ίͨ ٞ࿦͸͋Δʁ ଞͷ৭ͷΧϥʔϑΟϧλʔ͸ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 0QUJNJ[BUJPOPGTIBSQBOEWJFXJOHBOHMFJOEFQFOEFOU TUSVDUVSBMDPMPS Design and simulation of omnidirectional reflective color filters based on metal-dielectricmetal structure (Optics express 2014, Yang, Chenying and Shen, Weidong and Zhang, Yueguang and Peng, Hao and Zhang, Xing and Liu, Xu)
  125. ڱ͍೾௕ҬͰ͔ͭݟΔ֯౓ʹґଘ͠ͳ͍ߏ଄৭Λग़ͨ͢Ίͷ ߏ଄ͷ࠷దԽΛϞσϧΛ૊ΜͰߦͬͨ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ೾௕ҬΛڱ͘͢Δ͜ͱͱݟΔ֯౓ʹґଘ͠ͳ͍͜ͱΛཱ྆͢Δ͜ͱ͸೉͔ͬ͠ ͕ͨɼຊ࿦จͰ͸༷ʑͳߏ଄Λݕ౼͠࠷దԽΛߦͬͨ݁Ռɼཱ྆Λ࣮ݱͨ͠ ೖࣹ֯ʹରͯ͠΋ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ τʔϥεܕͷϦϯάঢ়ͷߏ଄ʹͨ͜͠ͱ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ

    ੑೳࢦ਺ΛࣗΒఆٛ͠ɼͦͷ޲্ʹద͏Α͏ͳϞσϧ࡞੒ ٴͼϞσϧ্ͷܭࢉ஋ͰɼTDBUUFSJOHSFTQPOTF͕طଘख๏Α Γվળ͍ͯ͠Δ͜ͱͷূ໌ ٞ࿦͸͋Δʁ ۭؾΛഔ࣭ͱͯ͠ܭࢉ͍ͯ͠Δ͕ɼۭؾҎ֎ͷഔ࣭ FYQPMZNFS  HMBTT ͷ৔߹ʹݟΔ֯౓΁ͷ໌͕֬͞ݮΔ͔΋ ࣍ʹಡΉ΂͖࿦จ͸ʁ "OHVMBSBOEQPMBSJ[BUJPOJOEFQFOEFOUTUSVDUVSBM DPMPSTCBTFEPO%QIPUPOJDDSZTUBMT Optimization of sharp and viewing-angle-independent structural color (Optics express 2015, Hsu, Chia Wei and Miller, Owen D and Johnson, Steven G and Solja{\v{c}}i{\'c}, Marin)
  126. ୯෼ࢄQPMZTUZSFOFٿͱDVUUMFpTI ί΢ΠΧ JOLͷཻࢠΛࣗݾ૊৫Խͤ͞ ͨΞϞϧϑΝεϑΥτχοΫߏ଄ΛఴՃࡎͱͯ͠࢖͑ΔΑ͏ʹ͠ɼඇ೒ ৭ͷ৭ͷ͸͖ͬΓͨ͠ߏ଄৭Λ࣮ݱͨ͠ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ DVUUMFpTIJOLͱQPMZTUZSFOFΛࠞͥɼQPMZTUZSFOFͷ௚ܘΛมԽͤ͞ Δ͜ͱͰ৭Λม͑ΒΕΔΑ͏ʹͨ͠ ·ͨɼDVUUMFpTIJOLͱQPMZTUZSFOFͷ഑߹཰ʹΑͬͯ΋৭͸มԽ͢Δ

    ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ DVUUMFpTIJOLͱQPMZTUZSFOFͷ഑߹ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞੒ͨ͠΋ͷͷ৭΍൓ࣹ཰ͷܭଌ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ "OHVMBSBOEQPMBSJ[BUJPOJOEFQFOEFOUTUSVDUVSBM DPMPSTCBTFEPO%QIPUPOJDDSZTUBMT Using Cuttlefi sh Ink as an Additive to Produce Non-iridescent Structural Colors of High Color Visibility (Advanced Materials 2015, Zhang, Yafeng and Dong, Biqin and Chen, Ang and Liu, Xiaohan and Shi, Lei and Zi, Jian)
  127. ེԽѥԖ ;O4 ͱࢎԽγϦίϯ 4J0 ͷࠞ߹ࡐྉͷφϊٿΛύ΢μʔԽ ͠ɼDBSCPOͱͱ΋ʹম݁ͨ͠ࡐྉΛ༻͍Δ͜ͱͰɼ֯౓ґଘੑ͕௿ ͘ɼ࠼౓͸ߴ͘ɼ҆ఆੑ΋ߴ͍ߏ଄৭Λ࡞੒ͨ͠ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ;O4ͱ4J0ͷίΞγΣϧߏ଄Λੜ੒͠ɼγΣϧͷް͞΋Լลʹͨ͠

    ·ͨDBSCPOͱͱ΋ʹম݁ͯ͠ύ΢μʔԽ͍ͯ͠Δ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ;O4ͱ4J0ͷίΞγΣϧߏ଄ͷੜ੒ɾDBSCPOΛ༻͍ͨম݁ ίΞγΣϧͷγΣϧͷް͞Λม͑ΔͱDBSCPOম݁ޙͷ৭΋มΘΔ ·ͨম݁Թ౓Ͱ΋৭͕গ͠มԽ͢Δ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹ࡞੒͠ɼ৭΍൓ࣹ཰Λܭଌͨ͠ ٞ࿦͸͋Δʁ ৭͸ͲΕ͘Β͍ͷύλʔϯग़ͤΔͷ͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ Structural coloration pigments based on carbon modified ZnS@ SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability (ACS applied materials & interfaces 2016, Wang, Fen and Zhang, Xin and Lin, Ying and Wang, Lei and Zhu, Jianfeng)
  128. ௒ૄਫੑͷߏ଄৭ΛɼεϓϨʔίʔςΟϯάͰ࣮૷ͨ͠ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ طଘͷߏ଄৭͸ೞΕͨΓ͢Δͱͦͷ઱΍͔͞Λࣦ͍͕ͪ ຊݚڀͰ͸ɼεϓϨʔίʔςΟϯάʹΑͬͯੜ੒ͨ͠௒ૄਫੑͷಛੑʹΑΓɼ֯౓ґଘΛ͠ͳ͍ ߏ଄৭ϑΟϧϜͷߴ଎ͳ੡଄Λ࣮ݱͨ͠ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ 4J0ϑΟϧϜʹ௒ૄਫੑͷ1%.4ΛεϓϨʔίʔςΟϯά γϦΧͷαΠζΛม͑Δ͜ͱͰ৭Λม͑Δ͜ͱ͕Ͱ͖Δ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ

    ࣮ࡍʹ࡞੒͠ɼਫʹ͚ͭΔͳͲͯ͠ੑೳΛ͔֬Ίͨ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ 4FMFDUJWF$PMPSBUJPOPG.FMBOJO/BOPTQIFSFTUISPVHI 3FTPOBOU.JF4DBUUFSJOH Rapid fabrication of angle-independent structurally colored films with a superhydrophobic property (Dyes and Pigments 2016, Wang, Fen and Zhang, Xin and Zhang, Lei and Cao, Min and Lin, Ying and Zhu, Jianfeng)
  129. ਓؒͷ൅ͷໟ͸؀ڥޫͷ༷ࢠʹΑͬͯ৭͕ҧͬͨΑ͏ʹݟ͑Δɽ͜Ε͸ϝ ϥχϯͷӨڹ͕͋ΔΘ͚͕ͩɼ͜ͷݱ৅Λར༻ͨ͠ਓ޻ߏ଄৭Λ࡞੒ͨ͠ ϝϥχϯͷ୅ΘΓʹɼQPMZEPQBNJOFΛ༻͍ɼͦͷαΠζ΍ີू౓Λύϥ ϝʔλͱͯ͠؀ڥޫԼͱεϙοτϥΠτԼͰݟ͑ํ͕ҟͳΔΑ͏ͳ෺࣭Λ ࡞੒ͨ͠ɽ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ਓؒͷ൅ͷໟͷݱ৅ΛԠ༻ͨ͠఺ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ φϊٿମঢ়ͷQPMZEPQBNJOFͷϛʔࢄཚͷڞ໐Ͱ৭Λ൓ࣹ͢Δ

    φϊٿମঢ়ͷQPMZEPQBNJOFΛϥϯμϜ෼ࢄͰɼαΠζͱີू౓Λม͑Δ͜ͱͰ৭Λม͑Δ͜ ͱ࣮ݱͨ͠఺ ·ͨQPMZEPQBNJOFΛೖΕΔ৔ॴΛਫ΍1&(%"ͷ̎ύλʔϯͰࢼ͍ͯ͠Δ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ QPMZEPQBNJOFͷ௚ܘ΍ີू౓Λม͑ͯɼ࣮ࡍʹޫΛ౰ͯͯ ৭ͷมԽΛ͔֬Ίͨ ٞ࿦͸͋Δʁ ؀ڥޫͱڧ͍ޫͷҧ͍ͬͯͲΕ͘Β͍γϏΞͳͷ͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ 1IPUPOJDHMBTTGPSIJHIDPOUSBTUTUSVDUVSBMDPMPS Selective Coloration of Melanin Nanospheres through Resonant Mie Scattering (Advanced Materials 2017, Cho, Soojeong and Shim, Tae Soup and Kim, Ju Hyeon and Kim, Dong-Hyun and Kim, Shin-Hyun)
  130. 1IPUPOJDT(MBTTͷߏ଄ͷ൓ࣹ཰ͷબ୒ੑ͸ɼٿঢ়ͷγΣϧܕͷ༠ి཰෼෍ͷϑʔϦΤม׵ͷ ܗঢ়ʹؔ܎͍ͯ͠Δɽ ϑΥτχΫεΨϥεΛ༻͍ͯɼద੾ʹύʔςΟΫϧͷδΦϝτϦΛબΜͰ૊Έ߹ΘͤΔ͜ͱ Ͱ૬৐తͳޮՌ͕ಘΒΕΔ DPSFTIFMMύʔςΟΫϧ͕ɼ࠼౓ͷߴ͍ϑΥτχΫεΨϥεͷ൓ࣹεϖΫτϧΛಘΔͨΊʹͲ ͷΑ͏ʹ࢖ΘΕΔ͔Λࣔͨ͠ DPSFTIFMMͷ۶ં཰ͷҧ͍΍ɼCBDLHSPVOEͷ۶ં཰ͷҧ͍ͳͲʹΑͬͯมԽ͢Δɽ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ 1IPUPOJD(MBTTߏ଄ʹ͓͍ͯɼ൓ࣹ཰ͷબ୒ੑ͕ٿঢ়ͷγΣϧܕͷ

    ༠ి཰෼෍ͷϑʔϦΤม׵ͷܗঢ়ʹؔ܎͍ͯ͠Δ͜ͱΛࣔͨ͠఺ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ DPSF΍TIFMMͷ૊Έ߹Θͤͷ࢓ํͰBNQMJUVEF͕มԽ͢Δ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ Photonic glass for high contrast structural color (arXiv 2018, Shang, Guoliang and Maiwald, Lukas and Renner, Hagen and Jalas, Dirk and Dosta, Maksym and Heinrich, Stefan and Petrov, Alexander Yu and Eich, Manfred)
  131. ϑΣϜτඵϨʔβʔΛ༻͍ͨNJDSPOBOPߏ଄Ճ޻ͷ3FWJFX࿦จ ֤ߏ଄ΛՃ޻͢ΔࡍͷϨʔβʔͷύϥϝʔλͳͲ͕ɼ࣮ݧΛ௨ ͯ͠ಘΒΕͨσʔλͱͯ͠ৄड़͞Ε͍ͯΔ φϊߏ଄ ϥϯμϜφϊߏ଄ɿχοέϧද໘΁ͷՃ޻ͳͲ पظతφϊߏ଄ɿνλϯද໘΁ͷՃ޻ͳͲ φϊͷಛ௃Λ࣋ͬͨϚΠΫϩߏ଄ ೾ଧͭߔ΍NJDSP3JQQMFɿνλϯද໘΁ͷՃ޻ͳͲ ԁபߏ଄ɿ ͦͷଞߏ଄ɿϗʔϧߏ଄

    ͲΜͳ΋ͷʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ #JP*OTQJSFE'VODUJPOBM4VSGBDFT#BTFEPO-BTFS *OEVDFE1FSJPEJD4VSGBDF4USVDUVSFT Fabrication of micro/nano structures on metals by femtosecond laser micromachining (Micromachines 2014: Ahmmed, KM and Grambow, Colin and Kietzig, Anne-Marie) ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ
  132. ੜ෺ʹ*OTQJSFE͞ΕͨϨʔβʔ༠ಋʹΑΔपظతද໘ߏ଄ʹ͍ͭ ͯͷ3FWJFX࿦จ ࣪५ੑ ੜ෺ͷதʹ͸ߏ଄ͱͯ͠Ꭲਫੑͷߴ͍ߏ଄Λ࣋ͭ΋ͷ͕͋Δ ௒ૄਫੑͷද໘Ճ޻Λਓ޻తʹϨʔβʔՃ޻Ͱ࣮ݱ ൓ࣹ શવ൓ࣹΛ͠ͳ͍ද໘ߏ଄Λ࣋ͭੜ෺͕͍Δ ϞϧϑΥ௏΍λϚϜγͷΑ͏ʹߏ଄৭Λ࣋ͭੜ෺΋͍Δ ൓ࣹ཰ͷ௿͍ߏ଄Λਓ޻తʹੜ੒ͨ͠ 

    ͲΜͳ΋ͷʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ #JP*OTQJSFE'VODUJPOBM4VSGBDFT#BTFEPO-BTFS *OEVDFE1FSJPEJD4VSGBDF4USVDUVSFT Bio-inspired functional surfaces based on laser-induced periodic surface structures (Materials 2016: M{\"u}ller, Frank A and Kunz, Clemens and Gr{\"a}f, Stephan) ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ٞ࿦͸͋Δʁ
  133. ֯౓ґଘͷपظతͳද໘ߏ଄Λ૊Έ߹ΘͤͯɼޫΛ͋ͯΔํ ޲ʹԠͯ͡ݟ͑Δ಺༰͕มΘΔΑ͏ͳද໘Ճ޻Λ࣮ݱͨ͠ ͲΜͳ΋ͷʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ଟํ޲͔ΒޫΛরࣹͯ͠΋ಉ͡Α͏ʹޫΔΑ͏ͳՃ޻ํ๏ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ७ਮͳSJQQMFΛ࡞ͬͯߏ଄৭Λग़ͤΔ͜ͱ͸Θ͔͍ͬͯͨ ͜ͷSJQQMFΛ௚ߦͤͯ͞Ճ޻ͤͨ࣌͞ʹɼ̎ಛ௃Λอ࣋͢Δ Α͏ͳՃ޻Λͨ͠ͷ͕ΩϞ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ

    ࣮ࡍʹ࡞੒͠ɼ̎ํ޲͔ΒޫΛ౰ͯͨ݁ՌΛࡱ૾ͨ͠ ٞ࿦͸͋Δʁ ന৭Ҏ֎ͷޫΛೖΕͨΓ͢ΔͱͲ͏ͳΔͷ͔ ·ͨํ޲ʹରͯ͠ͲΕ΄Ͳϩόετͳͷ͔ ࣍ʹಡΉ΂͖࿦จ͸ʁ %JSFDUWJTVBMJ[BUJPOPGUIFDPNQMFUFFWPMVUJPOPG GFNUPTFDPOEMBTFSJOEVDFETVSGBDFTUSVDUVSBMEZOBNJDTPG NFUBMT Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses (Applied Surface Science 2012, Yao, Jianwu and Zhang, Chengyun and Liu, Haiying and Dai, Qiaofeng and Wu, Lijun and Lan, Sheng and Gopal, Achanta Venu and Trofimov, Vyacheslav A and Lysak, Tatiana M)
  134. 'MFY4UZMVT-FWFSBHJOH#FOE*OQVUGPS1FO*OUFSBDUJPO         

      Švqn@D“i wG?DVXR^VE&e•J[aDK.Bƒ2š 70xs?2B0=;1&f™VXR^VE•JT `]aBAP–3{Dz<šJƒ2šPxs?2N' |C’HF2ID  #   "$"#% # ! !" " % !!# "  Z_Z_ *…kU)V+ l‚J›DS\E( K3,Nb¡~DVXR^V?E&dšBb¡ *b¡P04Nš+70‰hCj?2B0=;1& 5Df™VXR^VE šuD•bP‰hCj? 2N' AQBID( [aŠ0L‡WaY1VXR^V' m¢ 5D[a}ŒD˜?DcŽ™1ADK.C B=>-ND0E—0LB-' yCgP–3yCf™VXR^V1b¡~KMžt 0A.0E„œ6O>-B-' žtˆD„œ ”r€C&b¡~VXR^V@f™VXR^VD š ?‘8†oPB:L9;' p‹7;Ÿ›C/->&b¡~VXR^VKMf™V XR^VDš1‰hCB:LO;'  
  135. Unsupervised Image-to-Image Translation Networks Ming-Yu Liu Thomas Breuel Jan Kautz

    
 ڭࢣͳ͠JNBHFUPJNBHFม׵ϑϨʔϜϫʔΫΛఏҊ͢Δ طଘͷڝ߹͢Δख๏ͱൺֱ͠ ·ͨυϝΠϯదԠ໰୊ͷσʔ ληοτΛ༻͍ͯݕূͨ͠ ڭࢣ͋Γֶश͸ରԠ͢Δը૾ͷϖΞ͕ඞཁʹͳΔ͕ ڭࢣ ͳֶ͠श͸ϖΞͰ͋Δը૾͕ඞཁͳ͍ͨΊσʔλͷऩू͕ ༰қ·ͨ ϕϯνϚʔΫςετͰ࠷ߴਫ४ͷ݁ՌΛग़ͨ͠ TIBSFEMBUFOUۭؒΛԾఆ͠ 7"&ͱ$PVQMFE("/Λ૊߹ ͤͨTIBSFEMBUFOUۭؒ͸DZDMFDPOTJTUFODZΛࣔ͠  TIBSFEMBUFOUۭؒΛհͯ͠ม׵ը૾͔Βೖྗը૾Λ෮ݩͰ ͖Δ
 ಓ࿏ͷը૾Λ੖Ε͔ΒӍ ன͔Β໷ Ն͔Βઇ ͦͷٯͷม׵ Λߦͬͨ·ͨ ಈ෺ը૾ͷม׵ إը૾ͷม׵Λߦͬͨ EPNBJOBEBQUBUJPO໰୊ʹద༻͠ ࠷ߴਫ४ͷύϑΥʔϚϯ εΛୡ੒ͨ͠ ܇࿅σʔληοτͷͭͷυϝΠϯͷରԠ͢Δը૾Λ࢖Θͣ ʹ ͋ΔυϝΠϯ͔ΒผͷυϝΠϯ΁ͷը૾ม׵Λֶश͢Δ ͜ͱΛࣔͨ͠Ϟσϧ͕Ψ΢εͷજࡏۭؒԾఆͷͨΊ ୯ๆੑ Ͱ͋ΔҌ఺୳ࡧ໰୊ͷͨΊ ֶश͕ෆ҆ఆʹͳΔ͜ͱ͕͋Δ 6OTVQFSWJTFESFQSFTFOUBUJPOMFBSOJOHXJUIEFFQDPOWPMVUJPOBM HFOFSBUJWFBEWFSTBSJBMOFUXPSLT   201813558 ஑ాҏ৫ #1 (ਓؒίʔε) ͲΜͳ΋ͷʁ Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ٞ࿦͸͋Δʁ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ࣍ʹಡΉ΂͖࿦จ͸ʁ
  136. ؔ࿈ݚڀ ɾAttribute2Image: Conditional Image Generation from Visual Attributes (Xinchen Yan,

    Jimei Yang, Kihyuk Sohn, Honglak Lee) ࢹ֮తͳଐੑ͔Βը૾Λੜ੒͢Δ৽نͳ໰୊఺ʹ͍ͭͯݕ౼͢Δɽզʑ͸ɼը૾ΛϑΥΞάϥ΢ϯυͱόοΫά ϥ΢ϯυͷෳ߹ମͱͯ͠ϞσϧԽ͠ɼ7"&Λ࢖༻ͯ͠FOEUPFOEͰֶशͰ͖Δજࡏม਺Λ༗͢Δ֊૚Խ͞Εͨੜ੒Ϟ σϧΛ։ൃ͢Δɽ·ͨɼإ΍ௗͷࣗવͳը૾Λ࣮ݧ͠ɼఏҊ͞ΕͨϞσϧ͕જࡏతදݱΛ࣋ͭଟ༷ͳαϯϓϧΛੜ੒ Ͱ͖Δ͜ͱΛݕূ͢Δɽ ɾConditional Image Generation with PixelCNN Decoders (Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, Koray Kavukcuoglu) 1JYFM$//ΞʔΩςΫνϟʹجͮ͘৽͍͠ը૾ີ౓ϞσϧΛ༻͍ͯ৚݅෇͖ը૾ੜ੒ΛఏҊ͢Δɽઆ໌ϥϕϧ΍λ άɼ·ͨ͸ଞͷωοτϫʔΫʹΑͬͯ࡞੒͞Εͨ೚ҙͷϕΫτϧ্Ͱ৚݅෇͚͢Δ͜ͱ͕Ͱ͖Δɽ·ͨɼ৚݅෇͖ 1JYFM$//͕ը૾"VUP&ODPEFSͷڧྗͳσίʔμͱͯ͠ಇ͘͜ͱΛࣔ͢ɽఏҊͨ͠Ϟσϧ͸ɼ1JYFM$//ͷ࠷ߴਫ४ͷ ੑೳͱҰக͢ΔΑ͏ʹର਺໬౓Λվળ͠ɼܭࢉྔΛେ෯ʹ࡟ݮͨ͠ɽ ɾUnsupervised representation learning with deep convolutional generative adversarial networks (Alec Radford, Luke Metz, Soumith Chintala) ۙ೥$//Λ༻͍ͨڭࢣ͋Γֶश͸Α͘ීٴ͍ͯ͠Δ͕ɼ$//Λ༻͍ͨڭࢣͳ͠ͷֶश͸஫໨͞Ε͍ͯͳ͍ɽ $//ͷΫϥεͷ̍ͭͰ͋Δ%$("/Λ঺հ͢Δɽ%$("/Ͱ͸(FOFSBUPSͱ%JTDSJNJOBUPSͷ྆ํʹ͓͍ͯɼΦϒδΣ Ϋτͷύʔπ͔Βγʔϯ΁ͱͭΒͳΔ֊૚తͳදݱΛֶश͍ͯ͠Δ͜ͱΛࣔ͢ɽ·ͨɼ("/Ͱֶशͨ͠ϑΟϧλʔΛ ՄࢹԽ͠ɼಛఆͷϑΟϧλʔ͕ಛఆͷΦϒδΣΫτΛඳ͘Α͏ʹֶश͍ͯ͠Δ͜ͱΛ࣮ূతʹࣔ͢ɽ͞Βʹɼ $POWPMVUJPOBM("/ͷຆͲͷ໰୊ʹֶ͓͍ͯशΛ҆ఆͤ͞Δߏ଄తτϙϩδʔʹ͍ͭͯͷ੍໿ΛఏҊ͠ධՁ͢Δɽ 201813558 ஑ాҏ৫ #1 (ਓؒίʔε)
  137. ɾCoupled Generative Adversarial Networks (Ming-Yu Liu, Oncel Tuzel) ϚϧνυϝΠϯը૾ͷ݁߹෼෍Λֶश͢ΔͨΊͷ݁߹ఢରతੜ੒ωοτϫʔΫͷ$P("/ΛఏҊ͢Δɽطଘख๏Ͱ ͸ɼτϨʔχϯάσʔληοτ಺ͷҟͳΔυϝΠϯʹରԠ͢Δը૾ͷλϓϧΛඞཁͱ͍͕ͯͨ͠ɼ$P("/͸ରԠ͢

    Δը૾ͷλϓϧແ͠Ͱֶश͢Δ͜ͱ͕Ͱ͖Δɽ͜Ε͸ɼॏΈڞ༗Λڧ੍͠ɼωοτϫʔΫ༰ྔΛ੍ݶͨ͜͠ͱʹΑΓ ୡ੒͞Εͨɽ$P("/ΛΧϥʔͷԞߦ͖͕͋Δը૾ͷ݁߹෼෍ֶश΍ҟͳΔଐੑʹΑΔإը૾ͷ݁߹෼෍Λֶश͢Δ λεΫʹద༻ͨ͠ɽ݁Ռͱͯ͠ɼ֤λεΫʹ͍ͭͯରԠ͢Δը૾ͷλϓϧແ͠Ͱ݁߹෼෍Λ͏·ֶ͘श͢Δɽ ɾPhoto-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi) ୯Ұը૾ͷ௒ղ૾ʹ͓͍ͯɼେ͖ͳ֦େ܎਺Ͱ௒ղ૾Λߦ͏ͱߴप೾੒෼ͷৄࡉͳ৘ใ͕ෆ଍͍ͯ͠Δͱ͍͏ࠜຊ తͳ໰୊͸ղܾ͞Ε͍ͯͳ͍ɽͦ͜Ͱɼ௒ղ૾༻ͷఢରతੜ੒ωοτϫʔΫ43("/ΛఏҊ͢Δɽ͜Ε͸ഒͷ֦େʹ ͓͍ͯࣗવͳࣸਅΛਪ࿦Ͱ͖Δ࠷ॳͷϑϨʔϜϫʔΫͰ͋Δɽ·ͨɼͦΕΛୡ੒͢ΔͨΊʹఢରతଛࣦͱίϯςϯπ ଛࣦ͔ΒಘΒΕΔ஌֮ଛࣦؔ਺ΛఏҊ͢Δɽ݁Ռͱͯ͠ɼެ։ϕϯνϚʔΫͰμ΢ϯαϯϓϦϯά͞Εͨը૾Λ෮ݩ ͢Δ͜ͱ͕Ͱ͖ɼ͞Βʹେن໛ͳ.FBO0QJOJPO4DPSFςετͷ஌֮είΞ͕େ෯ʹ޲্ͨ͠ɽ 201813558 ஑ాҏ৫ #1 (ਓؒίʔε)
  138. Silicone Devices: A Scalable DIY Approach for Fabricating Self-Contained Multi-Layered

    Soft Circuits using Microfluidics Steven Nagels1* , Raf Ramakers2* , Kris Luyten3 , Wim Deferme1 ͲΜͳ΋ͷʁ γϦίϯͱΨϦ΢ϜΛ࢖ͬͨ΢ΣΞϥϒϧσόΠεͷ࡞ ੒ͷͨΊͷϓϥοτϑΥʔϜͷ࡞੒ɺධՁΛߦͬͨɻ ઌߦݚڀͱൺ΂ͯͲ͕͍͜͢͝ʁ ୹࣌ؒͰॊΒ͔͍ిࢠσόΠεΛ࡞੒͢Δ͜ͱ͕Ͱ͖Δɻ ৳͹ͨ͠ޙͰ΋ճ࿏ͷ఍߅஋͕͙͢ʹݩʹ໭Δ ٕज़΍ख๏ͷΩϞ͸Ͳ͜ʁ ΨϦ΢ϜΛ࢖͍ͬͯΔͨΊɺճ࿏Λ৳͹ͨ͠ޙʹ఍߅஋ ͕΄΅ݩͷ஋ʹ໭Δ ٞ࿦͸͋Δʁ ࿪ΈηϯαʔͳͲ΋ΠϯΫ͚ͩͰ࣮૷͢Δ͜ͱ͕Ͱ͖Δ ͷͰ73ͷάϩʔϒͱ૬ੑ͕͍͍͔΋͠Εͳ͍ ࣍ʹಡΉ΂͖࿦จ Instant Inkjet Circuits: Lab-based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices Ͳ͏΍ͬͯ༗ޮͩͱݕূͨ͠ʁ ࣮ࡍʹීஈ͔Βճ࿏Λ࡞͍ͬͯΔਓʹࢼͯ͠΋Β͍࢖ ͍΍͢͞ͳͲͷௐࠪΛͨ͠ ؠ࡚ɹཬۢɹਓؒίʔεDIJ
  139. PrintScreen: Fabricating Highly Customizable Thin-film Touch-Displays TFELΛ࢖ͬͯҹ࡮͢Δ͜ͱʹΑͬͯɺ༷ʑͳ΋ͷͷΛޫΔσΟεϓϨΠʹ͢Δ͝ͱ͕Ͱ͖Δɻ Instant Inkjet Circuits:

    Lab-based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices ಋిੑΠϯΫΛ࢖ͬͯࢴͷ্ʹҹ࡮͢Δ͜ͱͰ؆୯ʹૣ͘ճ࿏ͷ࡞੒͕Ͱ͖Δɻ SkinMarks: Enabling Interactions on Body Landmarks Using Conformal Skin Electron ഽͷ্ʹ௚઀ϚʔΧʔΛ͚ͭΔ͜ͱʹΑͬͯɺϘλϯͱͯ͠ͷೖྗ͕Ͱ͖Δɻ Sketching in Circuits: Designing and building electronics on paper ಋిੑͷςʔϓΛ࢖͏͜ͱʹΑͬͯɺϊʔτͷ্Ͱ΋ిࢠճ࿏͕࡞ΕΔΑ͏ͳϓϥοτϑΥʔϜ ͷ࡞੒ɺධՁΛߦͬͨɻ iSkin: Stretchable On-Body Touch Sensors for Mobile Computing ഽͷ্ʹۂ͕Δ͜ͱ͕Ͱ͖ΔηϯαʔΛ͓͚Δɻ ͜ͷ͜ͱʹΑͬͯɺ༷ʑͳσόΠεʹೖྗΛ͢Δ͜ͱ͕Ͱ͖Δɻ ؠ࡚ɹཬۢɹਓؒίʔε
  140. '!#-4'--1$/ $&/$$**/-2,#(/12!* ,1$/!"1(3$-,1$,1 0(&&/!.'      Dz

    ½»j9n !0!02)$!02+-1-∗ 00(01!,1/-%$00-/!"2*15-%,%-/+!1(-,$"',-*-&5!,!&!4!,01(121$-%$"',-*-&5 !)$'(/-$/!-)!: 00(01!,1/-%$00-/"'--*-%$#(!"($,"$-)5-,(3$/0(15-%$"',-*-&5   RbSZU8 Ž’UrtenTumfhp9a¡JO =_7umfhp9B±„HL…§T¯ BžOD_A]K`a°Ii9v7 np€sd9€P6¹†S]REPZ| d}S¨—BPC_7  ¥™•Q¶WOREBIF=8 ¹†T±„I_“V¦A]<ML-,$0$1 !*  B6E`Vº£Uumfhp9 aÂ=_SRU©ŒÁS¤·a¸ÃQHS =7  Ÿ[ÀUgxVRE8 2+(  Q=>Ž’UrtenTxte }~9l9umfhp9Q;›o€k9 B¡MO@^ŽaƒDQo€k9U«Q– U‚¬QÆU­GA]”®G`_ew9m Bu~ez9U¦T±„G`_     E=NB‡aˆµTI_A rtenT¡MO=_umfhp9Br tenA]U¢¿aZQT…§a±„I_ LY6\^|d}S¨—Bˆµ7 ¹†aŠªTc9qy}‘‹T¾?] `6{9l9VĐ=˜œ‰a³_EQB PC_7  šT´XWCżV8 -,$0$1!*