Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Kelvin Newman-What the Flash Crash & Black Boxe...

Distilled
November 29, 2014

Kelvin Newman-What the Flash Crash & Black Boxes can Teach us about the Future of Search

Distilled

November 29, 2014
Tweet

More Decks by Distilled

Other Decks in Technology

Transcript

  1. W H AT T H E F L A S

    H C R A S H & B L A C K B O X E S C A N T E A C H U S A B O U T T H E F U T U R E O F S E A R C H . @ K E LV I N N E W M A N
  2. W H AT ’ S Y O U R J

    O B ? @ K E LV I N N E W M A N
  3. Pop!Tech “Practice isn't the thing you do once you're good.

    It's the thing you do that makes you good.” ― Malcolm Gladwell, Outliers: The Story of Success
  4. On some Malcolm Gladwell, David Bowie meets Kanye shit, This

    is dedication, A life lived for art is never a life wasted, Ten thousand hours felt like ten thousand hands, Ten thousands hands, they carry me. ― Macklemore - Ten Thousand Hours floshe24 @ K E LV I N N E W M A N
  5. @ K E LV I N N E W M

    A N I thought maybe it’s the Dunning-Kruger effect. Adam Sundana
  6. @ K E LV I N N E W M

    A N Adam Sundana The Dunning–Kruger effect is a cognitive bias manifesting in unskilled individuals suffering from illusory superiority, mistakenly rating their ability much higher than is accurate. This bias is attributed to a metacognitive inability of the unskilled to recognize their ineptitude. Conversely, people with true ability tend to underestimate their relative competence based on the erroneous or exaggerated claims made by unskilled people.
  7. but it was more than that @ K E LV

    I N N E W M A N Eva Rinaldi
  8. T H I N G S I T H O

    U G H T W E R E T R U E ; N O L O N G E R W E R E @ K E LV I N N E W M A N
  9. T H I N G S I S A I

    D W O R K E D N O L O N G E R W O R K E D @ K E LV I N N E W M A N
  10. A N D T H AT 3 5 , 0

    0 0 W O R D E B O O K I W R O T E A B O U T L I N K B U I L D I N G
  11. this presentation isn't about one weird trick to get better

    rankings ... @ K E LV I N N E W M A N
  12. it’s about me dealing with the realisation that I didn’t

    understand Google, quite as much, as I thought I did.
  13. & I T W I L L C H A

    N G E T H E WAY Y O U T H I N K A B O U T H O W S E A R C H E N G I N E S W O R K @ K E LV I N N E W M A N
  14. B E C A U S E , W E

    N E E D T O T H I N K M O R E ( A B O U T H O W W E T H I N K . ) @ K E LV I N N E W M A N
  15. T H E P R O P @ K E

    LV I N N E W M A N
  16. S O M E G R E AT P E

    O P L E H AV E S T U D I E D T H E R E . @ K E LV I N N E W M A N
  17. I A N M C E WA N N O

    V E L I S T A N D A U T H O R O F O S C A R W I N N I N G A T O N E M E N T @ K E LV I N N E W M A N
  18. V I R G I N I A WA D

    E T H R E E T I M E G R A N D - S L A M W I N N E R
  19. M I C H A E L B U E

    R K L E G E N D A RY B R O A D C A S T E R
  20. K E LV I N N E W M A

    N B L O K E W H O U S E D T O D J A T T H E S T U D E N T U N I O N @ K E LV I N N E W M A N
  21. B U T O U R S T O RY

    I S N ’ T A B O U T T H E M @ K E LV I N N E W M A N
  22. A N D H O W T H E Y

    M E T T H E PA R T N E R S O F T H E I R D R E A M S @ K E LV I N N E W M A N
  23. H A D A W E S O M E

    K I D S @ K E LV I N N E W M A N
  24. A N D I N E X P L I

    C A B LY P L AY E D S W I N G - B A L L O N T H E S TA G E W H E R E A B B A W O N E U R O V I S I O N @ K E LV I N N E W M A N
  25. I T ’ S A B O U T @

    K E LV I N N E W M A N
  26. D R . A D R I A N T

    H O M P S O N E V O L U T I O N A RY & A D A P T I V E S Y S T E M S G R O U P @ K E LV I N N E W M A N
  27. U N I V E R S I T Y

    O F S U S S E X , 1 9 9 6 D E PA R T M E N T O F I N F O R M A T I C S
  28. H E A S K E D C O U

    L D A C I R C U I T “ E V O LV E ” T O S O LV E A P R O B L E M @ K E LV I N N E W M A N
  29. S U R V I VA L O F T

    H E F I T T E S T A P P L I E D T O C I R C U I T S T H E E X P E R I M E N T
  30. S U R V I VA L O F T

    H E F I T T E S T @ K E LV I N N E W M A N
  31. S U R V I VA L O F T

    H E F I T T E S T @ K E LV I N N E W M A N
  32. S U R V I VA L O F T

    H E F I T T E S T @ K E LV I N N E W M A N
  33. T H E F I T T E S T

    W I N O U T AT T H E E X P E N S E O F T H E I R R I VA L S B E C A U S E T H E Y S U C C E E D I N A D A P T I N G T H E M S E LV E S T O T H E I R E N V I R O N M E N T C H A R L E S D A R W I N www.CGPGrey.com @ K E LV I N N E W M A N
  34. P R I M O R D I A L

    D ATA S O U P O F R A N D O M O N E S A N D Z E R O S
  35. T H E F I R S T H U

    N D R E D G E N E R AT I O N S W E R E L I T T L E B E T T E R T H A N R A N D O M G U E S S E S JD Hancock @ K E LV I N N E W M A N
  36. By generation #220 there were some encouraging signs. Generation #1400

    had a fifty percent success rate. Just after #4000 it worked. @ K E LV I N N E W M A N
  37. S O M E T H I N G S

    T R A N G E H A P P E N E D I T W O R K E D B U T JD Hancock @ K E LV I N N E W M A N
  38. The circuit solved the problem using thirty-seven logic gates. Five

    logic cells were connected in ways which wouldn't allow them to influence how the circuit worked. But if you removed them the chip stopped working. @ K E LV I N N E W M A N
  39. Mike tried to sell shares he inherited, that should have

    been worth about $45k but actually sold for closer to $28k @ K E LV I N N E W M A N
  40. Moments before each share was selling for $60. Minutes later

    they’d returned to that price @ K E LV I N N E W M A N
  41. T H E L O W E S T P

    R I C E I N S E V E N Y E A R S . @ K E LV I N N E W M A N
  42. B I G G E S T O N E

    D AY D R O P I N T H E D O W J O N E S I N D U S T R I A L AV E R A G E ’ S 1 1 8 Y E A R H I S T O RY @ K E LV I N N E W M A N
  43. The index fell by thousand points or 9% Twenty minutes

    later it had bounced back six hundred points. @ K E LV I N N E W M A N
  44. T H I R T Y O F T H

    E U S ’ S B I G G E S T C O M PA N I E S H A D I N S TA N T LY L O S T 9 % O F T H E I R VA L U E @ K E LV I N N E W M A N
  45. W H Y D I D I T H A

    P P E N ? @ K E LV I N N E W M A N
  46. FAT F I N G E R S T H

    E T H E O R I E S JD Hancock @ K E LV I N N E W M A N
  47. JD Hancock T H E G L I T C

    H T H E T H E O R I E S @ K E LV I N N E W M A N
  48. T H E I M PA C T O F

    H I G H F R E Q U E N C Y T R A D E R S T H E T H E O R I E S JD Hancock @ K E LV I N N E W M A N
  49. JD Hancock I T M AY H AV E B

    E E N A L L O F T H E S E R E A S O N S , O R N O N E O F T H E M . T H E S Y S T E M I S T O O C O M P L E X T O U N D E R S TA N D B U T T H E A L G O B E H AV E D A S T H E Y S H O U L D T H E R E A L I T Y @ K E LV I N N E W M A N
  50. Algorithms can react in peculiar ways when they come into

    contact with other algorithms, and the real world
  51. D R . I A N M A L C

    O L M M A T H E M A T I C I A N A T T H E U N I V E R S I T Y O F T E X A S A T A U S T I N Jamie Henderson @ K E LV I N N E W M A N
  52. N O T R E A L LY D R

    . I A N M A L C O L M Jamie Henderson
  53. http://brandonbird.com/ D R . I A N M A L

    C O L M A C T U A L LY F I C T I O N A L C H A R A C T E R I N J U R A S S I C PA R K @ K E LV I N N E W M A N
  54. J U R A S S I C PA R

    K D O E S A N E X C E L L E N T J O B O F E X P L A I N I N G C H A O S T H E O RY. @ K E LV I N N E W M A N
  55. “ W H E N T H E P R

    E S E N T D E T E R M I N E S T H E F U T U R E , B U T T H E A P P R O X I M AT E P R E S E N T D O E S N O T A P P R O X I M AT E LY D E T E R M I N E T H E F U T U R E . ” @ K E LV I N N E W M A N Edward Norton Lorenz
  56. P H Y S I C S I S G

    O O D AT D E S C R I B I N G C E R TA I N K I N D S O F B E H AV I O U R L I N E A R E Q U A T I O N S Niki Odolphie @ K E LV I N N E W M A N
  57. 55Laney69 @ K E LV I N N E W

    M A N E V E N I F Y O U K N E W E V E RY T H I N G A B O U T H O W T H E W E AT H E R W O R K E D Y O U S T I L L C O U L D N ’ T P R E D I C T I T N O N - L I N E A R E Q U A T I O N S
  58. C O M P L E X ≠ C O

    M P L I C AT E D @ K E LV I N N E W M A N
  59. D I F F E R E N C E

    B E T W E E N S I M P L E , C O M P L I C AT E D A N D C O M P L E X S Y S T E M S Simple Systems Complicated Systems Complex Systems Like Following A Recipe For A Meal Like Sending A Rocket To The Moon Like Being A Parent To A Child The Relationship Between Cause And Effect Is Obvious The Relationship Between Cause And Effect Requires Expert Knowledge The Relationship Between Cause And Effect Is Hard To Determine @ K E LV I N N E W M A N
  60. Even with billions at stake, the world’s greatest scientists cannot

    predict the outcomes of a complex and chaotic system with precision
  61. S O W H AT ’ S T H I

    S G O T T O D O W I T H S E A R C H ? @ K E LV I N N E W M A N
  62. H E D O E S N ’ T K

    N O W H O W G O O G L E W O R K S Steve Jurvetson @ K E LV I N N E W M A N
  63. H E C A N ’ T K N O

    W H O W G O O G L E W O R K S storyspinn @ K E LV I N N E W M A N
  64. A N D H E H A S N ’

    T G O T A B L O O D Y C L U E . @ K E LV I N N E W M A N
  65. G O O G L E ’ S A L

    G O I S P E R F E C T E X A M P L E O F A C O M P L E X & C H A O T I C S Y S T E M Les Chatfield
  66. A R E A M A C H I N

    E L E A R N I N G C O M PA N Y @ K E LV I N N E W M A N
  67. When machines teach themselves; they solve problems in ways we

    can't understand or reverse engineer. JD Hancock @ K E LV I N N E W M A N
  68. Algorithms can react in peculiar ways when they come into

    contact with other algorithms, and the real world JD Hancock @ K E LV I N N E W M A N
  69. When Google release an update or change to their algorithm

    they can never fully anticipate how it will work in real world nor how the real world will react to that change. @ K E LV I N N E W M A N
  70. Even with billions at stake, the world’s greatest scientists cannot

    predict the outcomes of a complex and chaotic system with precision Noah @ K E LV I N N E W M A N
  71. In a complex and chaotic systems the relationship between cause

    and effect is very hard to determine @ K E LV I N N E W M A N
  72. I used to think the search algorithms work like clocks

    Arjan Richter @ K E LV I N N E W M A N
  73. “You don’t need a weatherman to know which way the

    wind blows” Alberto Cabello @ K E LV I N N E W M A N
  74. “You don’t need a weatherman to know which way the

    wind blows” goblinbox @ K E LV I N N E W M A N there’s a difference between interesting and useful
  75. A N D F I N A L LY, T

    H I N K A B O U T H O W Y O U T H I N K A B O U T G O O G L E @ K E LV I N N E W M A N
  76. B E C A U S E , W E

    N E E D T O T H I N K M O R E ( A B O U T H O W W E T H I N K . ) @ K E LV I N N E W M A N
  77. B U T W H A T A B O

    U T T H E B O X @ K E LV I N N E W M A N
  78. E S S E N T I A L LY

    I T ’ S A M A C G U F F I N @ K E LV I N N E W M A N
  79. W H A T I S A M A C

    G U F F I N ? @ K E LV I N N E W M A N
  80. T H E O B J E C T T

    H AT D R I V E S T H E S T O RY F O R WA R D A N D I S O F V I TA L I M P O R TA N T T O B O T H T H E H E R O E S A N D V I L L A I N S E V E N I F T H E S P E C I F I C S O F T H E O B J E C T I T S E L F R E M A I N O B S C U R E O R A R E U N I M P O R TA N T. @ K E LV I N N E W M A N
  81. Our box contains all of the Google Algorithm on a

    USB key, would you open it? @ K E LV I N N E W M A N
  82. @ K E LV I N N E W M

    A N Slides - http://bit.ly/theflashcrash