Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Revolutionizing the Fan Experience with Search ...

Elastic Co
November 02, 2017

Revolutionizing the Fan Experience with Search at Ticketmaster

Elastic{ON} Tour LA - November 2, 2017

Helping fans find the perfect seat is a top priority for Ticketmaster. It's also a considerable challenge for their data system. In this presentation, Ticketmaster will demonstrate how they use search technology to solve for the difficult problem of helping users find seats, a volatile commodity as inventory changes. They will also highlight other areas, including marketing and abuse prevention, where they are leveraging search technology to help fans get tickets to the events they want to see.

John Carnahan | CDO, EVP of Data Science |Ticketmaster

Elastic Co

November 02, 2017
Tweet

More Decks by Elastic Co

Other Decks in Technology

Transcript

  1. 2 TICKETMASTER + ELASTIC Piecewise Modernization of 40 Year Data

    Company Overview Ticketmaster Data Story Many places where Elasticsearch fits our overall data strategy • Client Example • Fan Example
  2. 7 TICKETMASTER’S STORY EDB1.TMOL.LAX0.WEBSYS.TMCS US Production Tools Target (Origin for

    all “B” data) EVENTDB sectionworks offering branding IVR tfopen venuemapdb wps release ORD0 Artemis Master edb1.tix.ord0.websys.tmcs que1.tmol.phx1.websys.tmcs que2.tmol.phx1.websys.tmcs que3.tmol.phx1.websys.tmcs que4.tmol.phx1.websys.tmcs PHX1 QUE ORD0 artemis art1.tix.ord0 local artemis db cleanup_num_days: 60 B’s A’s A’s edb1.tmol.phx1.websys.tmcs edb2.tmol.phx1.websys.tmcs edb3.tmol.phx1.websys.tmcs edb4.tmol.phx1.websys.tmcs edb5.tmol.phx1.websys.tmcs edb6.tmol.phx1.websys.tmcs edb7.tmol.phx1.websys.tmcs edb8.tmol.phx1.websys.tmcs edb9.tmol.phx1.websys.tmcs edb10.tmol.phx1.websys.tmcs edb11.tmol.phx1.websys.tmcs edb12.tmol.phx1.websys.tmcs edb13.tmol.phx1.websys.tmcs edb14.tmol.phx1.websys.tmcs edb15.tmol.phx1.websys.tmcs TMOL PHX1 SLAVES edb1.tmol.phx2.websys.tmcs edb2.tmol.phx2.websys.tmcs edb3.tmol.phx2.websys.tmcs edb4.tmol.phx2.websys.tmcs edb5.tmol.phx2.websys.tmcs edb6.tmol.phx2.websys.tmcs edb7.tmol.phx2.websys.tmcs edb8.tmol.phx2.websys.tmcs edb9.tmol.phx2.websys.tmcs edb10.tmol.phx2.websys.tmcs edb11.tmol.phx2.websys.tmcs edb12.tmol.phx2.websys.tmcs edb13.tmol.phx2.websys.tmcs edb14.tmol.phx2.websys.tmcs edb15.tmol.phx2.websys.tmcs TMOL PHX2 SLAVES mdb1.tmol.phx1.websys.tmcs PHX1 CLUSTER MASTER mdb1.tmol.phx2.websys.tmcs PHX2 CLUSTER MASTER que1.tmol.phx2.websys.tmcs que2.tmol.phx2.websys.tmcs que3.tmol.phx2.websys.tmcs que4.tmol.phx2.websys.tmcs PHX2 QUE que1.tmol.ash1.websys.tmcs que2.tmol.ash1.websys.tmcs que3.tmol.ash1.websys.tmcs que4.tmol.ash1.websys.tmcs ASH1 QUE edb1.tmol.ash1.websys.tmcs edb2.tmol.ash1.websys.tmcs edb3.tmol.ash1.websys.tmcs edb4.tmol.ash1.websys.tmcs edb5.tmol.ash1.websys.tmcs edb6.tmol.ash1.websys.tmcs edb7.tmol.ash1.websys.tmcs edb8.tmol.ash1.websys.tmcs edb9.tmol.ash1.websys.tmcs edb10.tmol.ash1.websys.tmcs edb11.tmol.ash1.websys.tmcs edb12.tmol.ash1.websys.tmcs edb13.tmol.ash1.websys.tmcs edb14.tmol.ash1.websys.tmcs edb15.tmol.ash1.websys.tmcs TMOL ASH1 SLAVES edb1.tmol.ash2.websys.tmcs edb2.tmol.ash2.websys.tmcs edb3.tmol.ash2.websys.tmcs edb4.tmol.ash2.websys.tmcs edb5.tmol.ash2.websys.tmcs edb6.tmol.ash2.websys.tmcs edb7.tmol.ash2.websys.tmcs edb8.tmol.ash2.websys.tmcs edb9.tmol.ash2.websys.tmcs edb10.tmol.ash2.websys.tmcs edb11.tmol.ash2.websys.tmcs edb12.tmol.ash2.websys.tmcs edb13.tmol.ash2.websys.tmcs edb14.tmol.ash2.websys.tmcs edb15.tmol.ash2.websys.tmcs TMOL ASH2 SLAVES mdb1.tmol.ash1.websys.tmcs ASH1 CLUSTER MASTER mdb1.tmol.ash2.websys.tmcs ASH2 CLUSTER MASTER que1.tmol.ash2.websys.tmcs que2.tmol.ash2.websys.tmcs que3.tmol.ash2.websys.tmcs que4.tmol.ash2.websys.tmcs ASH2 QUE ord0 Standby edb2.tix.ord0 LAX0 Standby edb2.tix.lax0 Simetra Venue Feed back to hosts LAX0 Mgr box mgr1.dba.lax0.websys.tmcs LAX0 artemis art1.tix.lax0 local artemis db cleanup_num_days: 60 LAX0 Artemis Master edb1.tix.lax0.websys.tmcs B’s A’s ORD0 Artemis Master edb1.stix.ord0.websys.tmcs A’s ORD0 artemis art1.stix.ord0 local artemis db cleanup_num_days: 360 ord0 Standby edb2.stix.ord0 edb1.shared.phx1.websys.tmcs PHX1 CLUSTER MASTER edb1.shared.phx2.websys.tmcs PHX2 CLUSTER MASTER edb2.shared.phx1.websys.tmcs edb3.shared.phx1.websys.tmcs edb4.shared.phx1.websys.tmcs edb5.shared.phx1.websys.tmcs edb6.shared.phx1.websys.tmcs edb7.shared.phx1.websys.tmcs edb8.shared.phx1.websys.tmcs edb9.shared.phx1.websys.tmcs edb10.shared.phx1.websys.tmcs SHARED PHX1 SLAVES edb2.shared.phx2.websys.tmcs edb3.shared.phx2.websys.tmcs edb4.shared.phx2.websys.tmcs edb5.shared.phx2.websys.tmcs edb6.shared.phx2.websys.tmcs edb7.shared.phx2.websys.tmcs edb8.shared.phx2.websys.tmcs edb9.shared.phx2.websys.tmcs edb10.shared.phx2.websys.tmcs SHARED PHX1 SLAVES LAX0 Artemis Master edb1.stix.lax0.websys.tmcs A’s LAX0 artemis art1.stix.lax0 local artemis db cleanup_num_days: 360 lax0 Standby edb2.stix.lax0 edb1.shared.ash1.websys.tmcs ASH1 CLUSTER MASTER edb1.shared.ash2.websys.tmcs ASH2 CLUSTER MASTER edb2.shared.ash1.websys.tmcs edb3.shared.ash1.websys.tmcs edb4.shared.ash1.websys.tmcs edb5.shared.ash1.websys.tmcs edb6.shared.ash1.websys.tmcs edb7.shared.ash1.websys.tmcs edb8.shared.ash1.websys.tmcs edb9.shared.ash1.websys.tmcs edb10.shared.ash1.websys.tmcs SHARED ASH1 SLAVES edb2.shared.ash2.websys.tmcs edb3.shared.ash2.websys.tmcs edb4.shared.ash2.websys.tmcs edb5.shared.ash2.websys.tmcs edb6.shared.ash2.websys.tmcs edb7.shared.ash2.websys.tmcs edb8.shared.ash2.websys.tmcs edb9.shared.ash2.websys.tmcs edb10.shared.ash2.websys.tmcs SHARED ASH2 SLAVES B’s B’s edb1.ivr.lax0.websys.tmcs IVR TOOLS MASTER edb1.ivr.ord0.websys.tmcs edb2.ivr.ord0.websys.tmcs edb3.ivr.ord0.websys.tmcs edb4.ivr.ord0.websys.tmcs IVR read only edb3.ntf.cft1.coreys.tmcs MySQL slave CRM UK DATA AD HOC UK DATA Replicated from the UK edb1.ntf.cft1.coresys.tmcs edb2.ntf.cft1.coresys.tmcs CRM NTF EDBs edb1.dba.ash1.coresys.tmcs PROMOTER POSTINGS TOOL cluster master edb2.dba.ash1.coresys.tmcs edb3.dba.ash1.coresys.tmcs edb4.dba.ash1.coresys.tmcs PROMOTER POSTINGS TOOL read only edb2.ivr.lax0.websys.tmcs edb3.ivr.lax0.websys.tmcs edb4.ivr.lax0.websys.tmcs edb5.ivr.lax0.websys.tmcs IVR read only edb1.dba.phx1.coresys.tmcs PROMOTER POSTINGS TOOL cluster master edb2.dba.phx1.coresys.tmcs edb3.dba.phx1.coresys.tmcs edb4.dba.phx1.coresys.tmcs PROMOTER POSTINGS TOOL read only Hosts ATL AGF ARZ CH1 AU2 AUS CH5 CH2 CH3 CH8 CH6 CH7 FL2 DAL DET LA2 FLO LA1 NCA MTN MXC NV2 NEV NTL NY2 NV3 NY1 NZL NY4 NY5 SCS PAN PHI T44 SEA T43 VAN TOR TWB WDC WES 1992: The move to relational data Event Meta Data moves to an RDBMS - Name - Date - Description
  3. 10 TICKETMASTER CLIENTS How we can rock their world without

    really trying Modernization of Reporting Tools With Elasticsearch
  4. 11 TICKETMASTER CLIENTS Pull Data in Real Time Reporting Archtics

    Archtics Reporting Pull Data in Real Time The Simple Solution
  5. TICKETMASTER CLIENTS The Simple Solution Sucks Reporting Real-time Can’t compare

    events Dangerous to operational data store Brittle Connections
  6. 15 TICKETMASTER CLIENTS Archtics ETL Ops Nightly Extract Nomalized Data

    DW Eng Data Eng De-Normalized Data Agg Data Reporting App Eng
  7. 16 TICKETMASTER CLIENTS Can compare events 24-48 hour delay Brittle

    and Complex Aggregates Only Process and People Heavy
  8. 17 TICKETMASTER CLIENTS Trxn Logs Reporting Archtics Norm Data De-Norm

    Data Trxn Logs Archtics Tap directly into data duplication Real-time Data for all events Idempotency for all Fine-grained data
  9. 21 TICKETMASTER FANS How we can rock their world without

    really trying VS Example of how everything is sold Powered by
  10. TICKETMASTER FANS Fan frustration as the time to find seats

    grows as more seats are sold. Slowing sales and panicking fans # SOLD Event Date Top of List Bottom of List
  11. 28 TICKETMASTER FANS Host 15 Kiloseats per second per Host

    Real-time Data for all events Smart Collapse Better Indexing Reduce Noise of frequent changes Host R3 4XL to I3 Double Performance 6X Storqge Half Cost Crazy throughput Reduction
  12. TICKETMASTER FANS Custom prototype interface that includes content and availability

    in an intuitive way Event Date Top of List Bottom of List
  13. TICKETMASTER CONCLUSIONS (ELASTIC) 1. Pushing data from operational systems has

    to be core to every data strategy. 2. You can be flexible about where the data land as long as it is in a stream first 3. Turn things into a search problem - not a panacea for every problem but much to be gained if you can 4. Surprisingly indexing rate into Elastic was not the biggest worry 5. It can take some effort but adding plugins can make a huge difference (i.e. seat adjacency and price) 6. Elastic is not great for pulling data to the browser quickly en masse – again better for search 7. Watch compression settings closely – not obvious that compression would help at first but made a huge difference because data between nodes was large