Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Magic Beans - Deploying Django on Elastic Beans...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Seb
September 11, 2014
Technology
0
84
Magic Beans - Deploying Django on Elastic Beanstalk
Seb
September 11, 2014
Tweet
Share
More Decks by Seb
See All by Seb
Double Click - Continue Building Better CLIs
elbaschid
0
470
I Can Be A Speaker, So Can You
elbaschid
0
320
Click - PyCaribbean 2017 - Puerto Rico
elbaschid
0
450
Conferencing - Engineering Meeting
elbaschid
1
45
Show & Tell - PyCon US 2016 Summary
elbaschid
1
110
Click: A Pleasure To Write, A Pleasure To Use
elbaschid
0
660
Hunting for Treasure in Django
elbaschid
1
700
Moby & The Beanstalk
elbaschid
1
520
Docker In Production - A War Story
elbaschid
1
320
Other Decks in Technology
See All in Technology
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
350
最速で価値を出すための プロダクトエンジニアのツッコミ術
kaacun
1
520
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
2
900
入社1ヶ月でデータパイプライン講座を作った話
waiwai2111
1
210
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
120
分析画面のクリック操作をそのままコード化 ! エンジニアとビジネスユーザーが共存するAI-ReadyなBI基盤
ikumi
0
130
Azure SRE Agent x PagerDutyによる近未来インシデント対応への期待 / The Future of Incident Response: Azure SRE Agent x PagerDuty
aeonpeople
0
280
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
Databricks Free Edition講座 データサイエンス編
taka_aki
0
280
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
410
toCプロダクトにおけるAI機能開発のしくじりと学び / ai-product-failures-and-learnings
rince
6
5.2k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
1
490
Featured
See All Featured
How to build a perfect <img>
jonoalderson
1
4.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1.1k
How to Ace a Technical Interview
jacobian
281
24k
Technical Leadership for Architectural Decision Making
baasie
1
230
Done Done
chrislema
186
16k
Visualization
eitanlees
150
17k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
170
Crafting Experiences
bethany
1
45
Raft: Consensus for Rubyists
vanstee
141
7.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Deep Space Network (abreviated)
tonyrice
0
42
Transcript
Magic Beans Deploying Django on Elastic Beanstalk with Docker Sebastian
Vetter @elbaschid github.com/elbaschid
For those who don't know me • Sebastian Vetter •
Backend Developer @ Snowball One • You can find me on: • twitter: @elbaschid • github: github.com/elbaschid
Deploying Websites Can Be Ugly
Deploying Websites Can Be Ugly 1. Set up server infrastructure.
2. Develop a magical application. 3. Use continuous integration, e.g. Travis 4. On success, manually deploy via scripts
Let's try and make it more beautiful
And we'll use beans for that
Not This One!
That's better!
AWS Elastic Beanstalk (EB) • Amazon's PaaS solution • Heroku-style
deployments • Combines various parts of AWS And now with Docker support
EB Architecture (I)
EB Architecture (II)
Elastic Beanstalk Console (I)
Elastic Beanstalk Console (II)
What is Docker?
What is Docker? • Isolated processes in userspace • Immutable
containers • Lightweight images • Git-style container distribution • More on https://www.docker.com/ whatisdocker/
Let's look at the magic
The ideal solution ...
... was a failure!
The new approach
The main steps 1. Push to github 2. Triggers a
test build on Travis 3. On success: 1. Create deployment artefact 2. Store in S3 3. Beanstalk creates Docker container 4. Deploy to EC2
How it works
Options to run/deploy a docker container on EB. • Using
Dockerrun.aws.json to pull from docker registry • Using Dockerfile to build on the EC2 instance • Using zip archive including both files + more
The build artefact my-magic-app.zip + Dockerfile + Dockerrun.aws.json + scripts/
+ .ebextensions/ ....
Dockerfile FROM stackbrew/ubuntu:14.04 RUN apt-get -qq update && \ apt-get
install -y -q all-the-things && \ curl https://bootstrap.pypa.io/get-pip.py -o /tmp/get-pip.py && \ python /tmp/get-pip.py ADD www /app/ WORKDIR /app RUN pip install -r deploy/requirements/test.txt EXPOSE 8000 VOLUME ['/var/log'] ADD scripts/start.sh /app/start.sh CMD /app/start.sh
Dockerrun.aws.json { "AWSEBDockerrunVersion": "1", "Volumes": [ { "HostDirectory": "/var/log/my-app", "ContainerDirectory":
"/var/log" } ], "Ports": [ { "ContainerPort": "8000" } ], "Logging": "/var/log" }
Setting up Travis to release docker image on success. •
Run the full test suite • After success, build the Docker container • Deploy the new container incl. static files
After successful tests after_success: - cd .. - ./scripts/deploy_to_beanstalk.sh
Putting the magic into beans • No easy to use
deployment scripts from Amazon • eb: useless and broken • awscli: easy to setup but lots of cli flags
It's Roll-Your-Own Time • Small script beanstalk • Uses beans.yml
for configuration • Inspired by tools like fig
Settings in beans.yml app_name: my-eb-app bucket_name: my-s3-bucket my-app-env: environment: AWS_ACCESS_KEY_ID:
AWS_SECRET_KEY: DJANGO_SECRET_KEY: DJANGO_DATABASE_HOST: <RDS host> DJANGO_DATABASE_PORT: <RDS port> DJANGO_DATABASE_NAME: <RDS DB name DJANGO_CONFIGURATION: Test settings: 'command': Timeout: 1000
Using Beansstalk $ python beanstalk.py create_archive <version> $ python beanstalk.py
release <version> $ python beanstalk.py deploy <env> <version> As an example: export RELEASE_VERSION=$TRAVIS_JOB_ID-$GIT_COMMIT $ python beanstalk.py create_archive ${RELEASE_VERSION} $ python beanstalk.py release ${RELEASE_VERSION} $ python beanstalk.py deploy my-app-env ${RELEASE_VERSION}
Versioning and deployment to EB environment. • Semantic versioning doesn't
work in CD (<major>.<minor>.<patch>) • How to generate meaningful versions?
What we do: • Use the Travis Job ID •
And the git commit GIT_COMMIT=$(git rev-parse --short HEAD) RELEASE_VERSION=$TRAVIS_JOB_$GIT_COMMIT
Running the Docker container #!/bin/bash set -e python manage.py migrate
/usr/local/bin/uwsgi --http :8000 \ --wsgi-file deploy/wsgi/test.py \ --logto /var/log/uwsgi.log
Ideas and improvements • Building docker images on Travis CI
and alternatives (Circle CI, Wercker). • Running browser tests against the production container instead of live server testcase. • Handling migrations in continiuous deployment. • Deploying with zero downtime.
Looks great from up here
But still not Paradise