Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Analysis of Hierarchical Multi-Content Text Cla...

Analysis of Hierarchical Multi-Content Text Classification Model on B-SHARP Dataset for Early Detection of Alzheimer's Disease

Emory NLP

July 08, 2021
Tweet

More Decks by Emory NLP

Other Decks in Technology

Transcript

  1. Analysis of Hierarchical Multi-Content Text Classi fi cation Model on

    B-SHARP Dataset
 for Early Detection of Alzheimer’s Disease Asia-Paci fi c Chapter of the Association for Computational Linguistic s Presented by Jinho D. Cho i October 28, 2020 ♠Renxuan A. Li, ♦Ihab Hajjar, ♦Felicia Goldstein, ♠Jinho D. Choi ♠Department of Computer Science, ♦Department of Neurolog y Emory University, Atlanta GA, USA [email protected]
  2. Mild Cognition Impairment (MCI) 3 Mild Cognitiv e Impairment Mil

    d Dementia Moderat e Dementia Sever e Dementia Impairment does not Interfere with activities or daily living First work to detec t MCI using NLP Impairment starts Interfering with activities or daily living
  3. B-SHARP Dataset 4 Brain, Stress, Hypertension, and Aging Research Program

    Collect 1-2 minute recordings for 3 tasks from MCI patients and Control subjects. Task 1 : Daily Activity Task 2 : Room Environment Task 3 : Picture Description
  4. B-SHARP Dataset 5 1st-visit 2nd-visit 3rd-visit Recordings MoCA BNT Control

    185 100 50 385 26.2 (±2.6) 14.2 (±1.2) MCI 141 68 28 265 21.5 (±3.5) 13.4 (±1.5) Total 326 168 78 650 24.2 (±3.8) 13.9 (±1.4) Subject make multiple visits to take more recordings. The term between the previous and each visit is 1 year. Tokens Sentences Nouns Verbs Conjuncts Complex Discourse Q1 Control 186.6 (±60.4) 10.4 (±4.5) 28.1 (±9.6) 30.4 (±11.5) 8.5 (±4.5) 2.3 (±1.7) 8.1 (±5.4) MCI 175.6 (±54.5) 9.8 (±4.1) 23.7 (±8.3) 29.3 (±10.4) 8.5 (±4.2) 2.0 (±1.6) 9.2 (±6.0) Q2 Control 191.5 (±11.8) 11.7 (±4.7) 41.1 (±13.3) 24.3 (±11.2) 6.6 (±4.5) 3.6 (±2.7) 7.1 (±4.8) MCI 178.6 (±11.7) 11.6 (±4.7) 36.7 (±12.1) 23.2 (±10.6) 6.4 (±4.4) 2.9 (±2.3) 8.4 (±5.3) Q3 Control 193.4 (±63.4) 12.6 (±5.4) 39.5 (±13.5) 28.4 (±10.1) 8.0 (±4.8) 3.3 (±2.1) 6.1 (±5.5) MCI 187.8 (±63.4) 12.7 (±5.1) 36.2 (±13.2) 27.7 (±10.9) 7.2 (±4.2) 2.6 (±2.0) 7.3 (±5.5) All Control 578.1 (±149.8) 34.5 (±10.7) 110.5 (±27.9) 84.2 (±25.4) 23.5 (±10.1) 9.3 (±4.5) 21.4 (±13.0) MCI 548.7 (±140.6) 34.0 (±10.5) 98.1 (±26.1) 81.2 (±24.1) 22.5 (±9.7) 7.7 (±4.2) 25.3 (±15.0) p 0.0110 0.5541 < 0.0001 0.1277 0.2046 < 0.0001 0.0006 Table 1: Average counts and their standard deviations of linguistic features per transcript in the B-SHARP dataset.
  5. Hierarchical Multi-Content Classi fi cation 6 w11 w12 ⋯ w1n

    [CLS1] w21 w22 ⋯ w2n [CLS2] w31 w32 ⋯ w3n [CLS3] c1 e11 e12 ⋯ e1n c2 e21 e22 ⋯ e2n c3 e31 e32 ⋯ e3n c1 c2 c3 MLP1 MLP2 MLP3 o2 o1 o3 ⊕ ⊕ MLPe oe Transformer1 (T1) Transformer2 (T2) Transformer3 (T3) Task 1 Task 2 Task 3
  6. Experiments 7 5-folds Cross Validation Transformer Encoder s BERT (Devlin

    et al., 2019 ) RoBERTa (Liu et al., 2020 ) ALBERT (Lan et al., 2019) CV0 CV1 CV2 CV3 CV4 ALL Control 77 77 77 77 77 385 MCI 53 53 53 53 53 265 Control 37 37 37 37 37 185 MCI 27 28 28 29 29 141 Recordings Subjects Subjects in each set are mutually exclusive to the other sets.
  7. Evaluation 8 BERT RoBERTa ALBERT Q1 Q2 Q3 Q1 Q2

    Q3 Q1 Q2 Q3 ACC 67.6 (±0.4) 69.0 (±1.2) 67.7 (±0.7) 69.0 (±1.5) 69.9 (±0.2) 65.2 (±0.3) 67.6 (±1.5) 69.5 (±0.3) 66.6 (±1.3) SEN 48.9 (±1.8) 57.1 (±2.5) 41.5 (±3.6) 44.3 (±4.5) 55.3 (±1.2) 37.1 (±3.7) 45.9 (±1.9) 52.2 (±0.6) 37.4 (±3.3) SPE 80.4 (±1.2) 77.3 (±2.8) 85.2 (±3.0) 85.8 (±2.1) 79.7 (±0.7) 84.5 (±3.0) 82.6 (±3.7) 81.4 (±0.3) 86.8 (±3.3) Table 3: Model performance on the individual tasks. ACC: accuracy, SEN: sensitivity, SPE: specificity. CNN BERTe RoBERTae ALBERTe Be + Re Ae + Re Be + Ae + Re ACC 69.5 (±0.2) 69.9 (±1.1) 71.6 (±1.5) 69.7 (±2.9) 72.2 (±0.7) 71.5 (±1.9) 74.1 (±0.3) SEN 49.2 (±0.8) 57.6 (±3.4) 48.5 (±6.1) 46.2 (±8.3) 56.5 (±2.5) 51.7 (±1.3) 60.9 (±5.2) SPE 83.5 (±0.9) 77.4 (±4.8) 87.5 (±1.8) 85.4 (±0.5) 83.1 (±0.9) 86.7 (±3.4) 84.0 (±2.4) Table 4: Performance of ensemble models. Berte /RoBERTae /ALBERTe use transcript embeddings from all 3 tasks trained by the BERT/RoBERTa/ALBERT models in Table 3, respectively. Be +Re uses transcript embeddings from both Berte and RoBERTae (so the total of 6 embeddings), Ae +Re uses transcript embeddings from both ALBERTe and RoBERTae (6 embeddings), and Be +Ae +Re uses transcript embeddings from all three models (9 embeddings). BERT RoBERTa ALBERT Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 ACC 67.6 (±0.4) 69.0 (±1.2) 67.7 (±0.7) 69.0 (±1.5) 69.9 (±0.2) 65.2 (±0.3) 67.6 (±1.5) 69.5 (±0.3) 66.6 (±1.3) SEN 48.9 (±1.8) 57.1 (±2.5) 41.5 (±3.6) 44.3 (±4.5) 55.3 (±1.2) 37.1 (±3.7) 45.9 (±1.9) 52.2 (±0.6) 37.4 (±3.3) SPE 80.4 (±1.2) 77.3 (±2.8) 85.2 (±3.0) 85.8 (±2.1) 79.7 (±0.7) 84.5 (±3.0) 82.6 (±3.7) 81.4 (±0.3) 86.8 (±3.3) Table 3: Model performance on the individual tasks. ACC: accuracy, SEN: sensitivity, SPE: specificity. CNN BERTe RoBERTae ALBERTe Be + Re Ae + Re Be + Ae + Re ACC 69.5 (±0.2) 69.9 (±1.1) 71.6 (±1.5) 69.7 (±2.9) 72.2 (±0.7) 71.5 (±1.9) 74.1 (±0.3) SEN 49.2 (±0.8) 57.6 (±3.4) 48.5 (±6.1) 46.2 (±8.3) 56.5 (±2.5) 51.7 (±1.3) 60.9 (±5.2) SPE 83.5 (±0.9) 77.4 (±4.8) 87.5 (±1.8) 85.4 (±0.5) 83.1 (±0.9) 86.7 (±3.4) 84.0 (±2.4) Table 4: Performance of ensemble models. Berte /RoBERTae /ALBERTe use transcript embeddings from all 3 tasks trained by the BERT/RoBERTa/ALBERT models in Table 3, respectively. Be +Re uses transcript embeddings from both Berte and RoBERTae (so the total of 6 embeddings), Ae +Re uses transcript embeddings from both ALBERTe and RoBERTae (6 embeddings), and Be +Ae +Re uses transcript embeddings from all three models (9 embeddings). Performance on the Individual Tasks Performance of the Ensemble Models
  8. Conclusion 9 Introduced the new dataset, B-SHARP , for the

    detection of Mild Cognitive Impairment (MCI) Presented Hierarchical Multi-Content Classi fi cation Mode l to jointly learn multiple documents from different tasks Achieved the state-of-the-art results with an ensemble mode l using three types of transformer encoders Please visit our lab webpag e http://nlp.cs.emory.edu