Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Reinforcement Learning Second edition - Notes o...
Search
Etsuji Nakai
February 10, 2020
Technology
0
140
Reinforcement Learning Second edition - Notes on DQN
Etsuji Nakai
February 10, 2020
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Lecture course on Microservices : Part 1
enakai00
1
3.1k
Lecture course on Microservices : Part 2
enakai00
1
3k
Lecture course on Microservices : Part 3
enakai00
1
3k
Lecture course on Microservices : Part 4
enakai00
1
3k
JAX / Flax 入門
enakai00
1
380
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
3.6k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
440
Python × 数学ブートキャンプガイド
enakai00
1
670
Riemann幾何学ユーザーのための情報幾何学入門
enakai00
0
340
Other Decks in Technology
See All in Technology
Flutterによる 効率的なAndroid・iOS・Webアプリケーション開発の事例
recruitengineers
PRO
0
110
Lexical Analysis
shigashiyama
1
150
AIチャットボット開発への生成AI活用
ryomrt
0
170
サイバーセキュリティと認知バイアス:対策の隙を埋める心理学的アプローチ
shumei_ito
0
390
エンジニア人生の拡張性を高める 「探索型キャリア設計」の提案
tenshoku_draft
1
130
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
360
OS 標準のデザインシステムを超えて - より柔軟な Flutter テーマ管理 | FlutterKaigi 2024
ronnnnn
0
110
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
750
OTelCol_TailSampling_and_SpanMetrics
gumamon
1
170
SRE×AIOpsを始めよう!GuardDutyによるお手軽脅威検出
amixedcolor
0
130
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
A Tale of Four Properties
chriscoyier
156
23k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
The Cult of Friendly URLs
andyhume
78
6k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Being A Developer After 40
akosma
86
590k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
Reinforcement Learning Second edition - Notes on DQN Etsuji Nakai
(@enakai00)
Functional Approximation 2 • これまでは、State Value Function v(s) 、もしくは、Action-State Value
Function q(s, a) の値をすべての状態 s について個別に記録(Tabular Method) • 状態数が爆発的に増加する問題では、メモリーの不足、計算時間の増加といった問題が発生 • 少数のパラメーター w を持った関数で v(s) 、もしくは、 q(s, a) を表現して、w をチューニン グすることで、近似的に計算する
Functional Approximation 3 • 近似関数が正しい価値関数の振る舞いとかけ離れていると、計算が収束しない可能性がある • 例:2つの状態 A, B があり相互の遷移に伴う報酬は
0。つまり、v(A) = v(B) = 0 が正解。 ◦ v(A) = w, v(B) = 2w と線形近似すると、A のベルマン方程式は、w を増加させようと して、B のベルマン方程式は、w を減少させようとするので、w は振動を続ける。 • パラメーターが発散するような例を作ることも可能
Functional Approximation 4
DQN 5 • 近似関数として、ニューラルネットワークを使用する(表現力の高い関数を用いることで、 前述の問題を避ける。) • Action - State Value
Function を下記の「方針」でアップデートする(Q-Learning) ◦ Off-policy メソッドなので、エピソードの収集は任意のポリシーで実施可能
DQN 6 • 実際の学習方法としては、エピソードに含まれる の4つ組を大量にストック しておいて、下記の誤差関数を最小化するようにバッチで学習する。(勾配降下法) • エピソードの収集は、たとえば、現在の Q(S, A) に基づいた
ε-Greedy を用いる。
DQN 7 • あくまで近似なので、「真の関数」との距離をどのように測るかで、最適化の結果は異なる 真の関数を何らかの 意味で射影したもの 近似空間の中で誤差 を最小にするもの
Monte Carlo Tree Search • 関数近似は原理的に不正確なので、学習済みのエージェントを用いて、実際にアクションを 選択する前に、現在の状態 S を出発点とするエピソードを(シミュレーションで)収集し て、Tabular
Method で価値関数を再見積もりする。 ◦ 現在の状態 S の周りに限定して実施するので、Tabular Method でもメモリー不足は起 きない
9 Monte Carlo Tree Search シミュレーション対象 のパスを一定のルール で決定する 終了状態に至る エピソードを収集
実際に得られた報酬を用 いて、パス上の価値関数 の値を更新
10 あるけあるけゲーム
11 あるけあるけゲーム https://github.com/enakai00/rl_book_solutions/blob/master/DQN/walk_game_dqn.ipynb