Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Reinforcement Learning Second edition - Notes o...
Search
Etsuji Nakai
February 10, 2020
Technology
0
160
Reinforcement Learning Second edition - Notes on DQN
Etsuji Nakai
February 10, 2020
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
19
3.6k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
570
Lecture course on Microservices : Part 1
enakai00
1
3.6k
Lecture course on Microservices : Part 2
enakai00
2
3.6k
Lecture course on Microservices : Part 3
enakai00
1
3.5k
Lecture course on Microservices : Part 4
enakai00
1
3.5k
JAX / Flax 入門
enakai00
1
540
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
3.9k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
510
Other Decks in Technology
See All in Technology
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
エンジニア向け技術スタック情報
kauche
1
260
地図も、未来も、オープンに。 〜OSGeo.JPとFOSS4Gのご紹介〜
wata909
0
110
第9回情シス転職ミートアップ_テックタッチ株式会社
forester3003
0
240
米国国防総省のDevSecOpsライフサイクルをAWSのセキュリティサービスとOSSで実現
syoshie
2
1.1k
Amazon ECS & AWS Fargate 運用アーキテクチャ2025 / Amazon ECS and AWS Fargate Ops Architecture 2025
iselegant
16
5.5k
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
2
240
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
200
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
140
Snowflake Summit 2025 データエンジニアリング関連新機能紹介 / Snowflake Summit 2025 What's New about Data Engineering
tiltmax3
0
310
HiMoR: Monocular Deformable Gaussian Reconstruction with Hierarchical Motion Representation
spatial_ai_network
0
110
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
140
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
184
22k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Into the Great Unknown - MozCon
thekraken
39
1.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.3k
Designing for Performance
lara
609
69k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Building Adaptive Systems
keathley
43
2.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Transcript
Reinforcement Learning Second edition - Notes on DQN Etsuji Nakai
(@enakai00)
Functional Approximation 2 • これまでは、State Value Function v(s) 、もしくは、Action-State Value
Function q(s, a) の値をすべての状態 s について個別に記録(Tabular Method) • 状態数が爆発的に増加する問題では、メモリーの不足、計算時間の増加といった問題が発生 • 少数のパラメーター w を持った関数で v(s) 、もしくは、 q(s, a) を表現して、w をチューニン グすることで、近似的に計算する
Functional Approximation 3 • 近似関数が正しい価値関数の振る舞いとかけ離れていると、計算が収束しない可能性がある • 例:2つの状態 A, B があり相互の遷移に伴う報酬は
0。つまり、v(A) = v(B) = 0 が正解。 ◦ v(A) = w, v(B) = 2w と線形近似すると、A のベルマン方程式は、w を増加させようと して、B のベルマン方程式は、w を減少させようとするので、w は振動を続ける。 • パラメーターが発散するような例を作ることも可能
Functional Approximation 4
DQN 5 • 近似関数として、ニューラルネットワークを使用する(表現力の高い関数を用いることで、 前述の問題を避ける。) • Action - State Value
Function を下記の「方針」でアップデートする(Q-Learning) ◦ Off-policy メソッドなので、エピソードの収集は任意のポリシーで実施可能
DQN 6 • 実際の学習方法としては、エピソードに含まれる の4つ組を大量にストック しておいて、下記の誤差関数を最小化するようにバッチで学習する。(勾配降下法) • エピソードの収集は、たとえば、現在の Q(S, A) に基づいた
ε-Greedy を用いる。
DQN 7 • あくまで近似なので、「真の関数」との距離をどのように測るかで、最適化の結果は異なる 真の関数を何らかの 意味で射影したもの 近似空間の中で誤差 を最小にするもの
Monte Carlo Tree Search • 関数近似は原理的に不正確なので、学習済みのエージェントを用いて、実際にアクションを 選択する前に、現在の状態 S を出発点とするエピソードを(シミュレーションで)収集し て、Tabular
Method で価値関数を再見積もりする。 ◦ 現在の状態 S の周りに限定して実施するので、Tabular Method でもメモリー不足は起 きない
9 Monte Carlo Tree Search シミュレーション対象 のパスを一定のルール で決定する 終了状態に至る エピソードを収集
実際に得られた報酬を用 いて、パス上の価値関数 の値を更新
10 あるけあるけゲーム
11 あるけあるけゲーム https://github.com/enakai00/rl_book_solutions/blob/master/DQN/walk_game_dqn.ipynb