Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Reinforcement Learning Second edition - Notes o...
Search
Etsuji Nakai
February 10, 2020
Technology
0
180
Reinforcement Learning Second edition - Notes on DQN
Etsuji Nakai
February 10, 2020
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
23
8.3k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
640
Lecture course on Microservices : Part 1
enakai00
1
3.7k
Lecture course on Microservices : Part 2
enakai00
2
3.7k
Lecture course on Microservices : Part 3
enakai00
1
3.6k
Lecture course on Microservices : Part 4
enakai00
1
3.6k
JAX / Flax 入門
enakai00
1
960
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
4.2k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
550
Other Decks in Technology
See All in Technology
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
100
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
820
Red Hat OpenStack Services on OpenShift
tamemiya
0
120
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
260
配列に見る bash と zsh の違い
kazzpapa3
3
160
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
160
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
620
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
670
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
1
2.8k
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
450
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
What's in a price? How to price your products and services
michaelherold
247
13k
Facilitating Awesome Meetings
lara
57
6.8k
BBQ
matthewcrist
89
10k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
190
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Done Done
chrislema
186
16k
Technical Leadership for Architectural Decision Making
baasie
2
250
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Transcript
Reinforcement Learning Second edition - Notes on DQN Etsuji Nakai
(@enakai00)
Functional Approximation 2 • これまでは、State Value Function v(s) 、もしくは、Action-State Value
Function q(s, a) の値をすべての状態 s について個別に記録(Tabular Method) • 状態数が爆発的に増加する問題では、メモリーの不足、計算時間の増加といった問題が発生 • 少数のパラメーター w を持った関数で v(s) 、もしくは、 q(s, a) を表現して、w をチューニン グすることで、近似的に計算する
Functional Approximation 3 • 近似関数が正しい価値関数の振る舞いとかけ離れていると、計算が収束しない可能性がある • 例:2つの状態 A, B があり相互の遷移に伴う報酬は
0。つまり、v(A) = v(B) = 0 が正解。 ◦ v(A) = w, v(B) = 2w と線形近似すると、A のベルマン方程式は、w を増加させようと して、B のベルマン方程式は、w を減少させようとするので、w は振動を続ける。 • パラメーターが発散するような例を作ることも可能
Functional Approximation 4
DQN 5 • 近似関数として、ニューラルネットワークを使用する(表現力の高い関数を用いることで、 前述の問題を避ける。) • Action - State Value
Function を下記の「方針」でアップデートする(Q-Learning) ◦ Off-policy メソッドなので、エピソードの収集は任意のポリシーで実施可能
DQN 6 • 実際の学習方法としては、エピソードに含まれる の4つ組を大量にストック しておいて、下記の誤差関数を最小化するようにバッチで学習する。(勾配降下法) • エピソードの収集は、たとえば、現在の Q(S, A) に基づいた
ε-Greedy を用いる。
DQN 7 • あくまで近似なので、「真の関数」との距離をどのように測るかで、最適化の結果は異なる 真の関数を何らかの 意味で射影したもの 近似空間の中で誤差 を最小にするもの
Monte Carlo Tree Search • 関数近似は原理的に不正確なので、学習済みのエージェントを用いて、実際にアクションを 選択する前に、現在の状態 S を出発点とするエピソードを(シミュレーションで)収集し て、Tabular
Method で価値関数を再見積もりする。 ◦ 現在の状態 S の周りに限定して実施するので、Tabular Method でもメモリー不足は起 きない
9 Monte Carlo Tree Search シミュレーション対象 のパスを一定のルール で決定する 終了状態に至る エピソードを収集
実際に得られた報酬を用 いて、パス上の価値関数 の値を更新
10 あるけあるけゲーム
11 あるけあるけゲーム https://github.com/enakai00/rl_book_solutions/blob/master/DQN/walk_game_dqn.ipynb