Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ameba広告の配信制御を刷新した話
Search
ykoma
April 18, 2023
Technology
0
200
Ameba広告の配信制御を刷新した話
ykoma
April 18, 2023
Tweet
Share
More Decks by ykoma
See All by ykoma
ネット被害に遭わないための IDパスワード管理 / Manage IDs and passwords to avoid internet fraud
euno7
0
200
EKSクラスタをいい感じに作ろうとしたら令和になった話(前編) / We tried to build EKS cluster nicely
euno7
6
1.2k
SIerとインターネット企業のエンジニアの仕事 / Comparing work of engineer between SIer and Internet company
euno7
0
470
奥深きキャッシュの世界 / The world of profound cache
euno7
4
920
Other Decks in Technology
See All in Technology
WantedlyでのKotlin Multiplatformの導入と課題 / Kotlin Multiplatform Implementation and Challenges at Wantedly
kubode
0
250
RubyでKubernetesプログラミング
sat
PRO
4
160
JuliaTokaiとJuliaLangJaの紹介 for NGK2025S
antimon2
1
110
ゼロからわかる!!AWSの構成図を書いてみようワークショップ 問題&解答解説 #デッカイギ #羽田デッカイギおつ
_mossann_t
0
1.5k
生成AI × 旅行 LLMを活用した旅行プラン生成・チャットボット
kominet_ava
0
160
三菱電機で社内コミュニティを立ち上げた話
kurebayashi
1
360
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
120
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
850
完全自律型AIエージェントとAgentic Workflow〜ワークフロー構築という現実解
pharma_x_tech
0
350
comilioとCloudflare、そして未来へと向けて
oliver_diary
6
440
【Oracle Cloud ウェビナー】2025年のセキュリティ脅威を読み解く:リスクに備えるためのレジリエンスとデータ保護
oracle4engineer
PRO
1
100
Azureの開発で辛いところ
re3turn
0
240
Featured
See All Featured
Facilitating Awesome Meetings
lara
51
6.2k
Mobile First: as difficult as doing things right
swwweet
222
9k
How to train your dragon (web standard)
notwaldorf
89
5.8k
For a Future-Friendly Web
brad_frost
176
9.5k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Rails Girls Zürich Keynote
gr2m
94
13k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
The Language of Interfaces
destraynor
155
24k
RailsConf 2023
tenderlove
29
970
Fireside Chat
paigeccino
34
3.1k
Transcript
Ameba広告の配信制御 アーキテクチャを 刷新した話 オレシカナイト vol.3 2017-09-27
About me
About me • 駒原 雄祐 (こまはら ゆうすけ) • (株)サイバーエージェント (2010~)
MDH アドテクノロジー局所属 • サーバサイドエンジニア • Ameba Infeed開発責任者(2015~)
About me • SIer出身 • サイバーエージェント入社後 • 課金プラットフォーム • コミュニティサービス
• 2012年からAmebaの広告のお仕事 • 妻と娘(1歳)とチワワ(3歳)の3人と1匹暮らし
今日のテーマ
Ameba広告の配信制御 アーキテクチャを刷新 した話
配信制御?
ネット広告配信の流れ
None
ここに相当
作成しているデータ1 • 静的なデータ(マスタデータなど) • 広告枠などの配信面の情報 • どのフォーマットの広告を何個返すか • 配信したくないNG業種や広告主 •
出稿側の情報 • 広告主、広告キャンペーン、配信先プレースメント、入札情報など • 広告のクリエイティブ情報(画像、テキスト、動画など) etc…
作成しているデータ2 • 動的なデータ • 広告枠ごとに対する配信候補のインデック スなど (様々な条件で時々刻々と変わる)
当初のアーキテクチャ
None
ִؒ ॳ Ͱ ઃఆ%#ͷ༗ޮͳσʔλͷ શྔநग़ ৴ʹదͨ͠ܗͷՃ Ωϟογϡαʔόͷ 165
όοναʔό͕࡞ͨ͠ ΩϟογϡσʔλΛ ੈผʹอ࣋
ఆظతʹ࠷৽ੈͷϙʔϦϯά ੈ͕ߋ৽͞ΕͨΒ Ωϟογϡαʔόͷ σʔλΛٵ্͍͛ ΦϯϝϞϦͰอ࣋
良いところ • シンプルな構成でランニングコストが低い • オンメモリで必要な全データをキャッシュするため低レイテンシ • RDBと配信が切り離されているため、RDBがボトルネックになる 心配がない • RDB側のスキーマ変更等による配信への影響もない
• キャッシュ作成時に問題が起きても、次の世代の処理が成功すれば 大丈夫、という安心感
ちなみに この仕組みについて2016年に弊社公式エンジニ アブログで執筆したのでそちらもぜひご一読を https://ameblo.jp/principia-ca/entry-12145898865.html ࣌ʮ"+"ʯͱ͍͏ ϒϥϯυ໊Ͱͬͯ·͠ ͕ͨɺ͍Ζ͍Ζ͋ͬͯݱ ࡏʮ"NFCB*OGFFEʯ ͱ͍͏໊લͰͬͯ·͢
運用を続けるうちに 課題が顕在化
データ量の増加
Ϗδωε֦େʹͬͯ σʔλྔ͕૿େ
ॲཧ͕࣌ؒ͘ͳΓ ִؒͷόον͕ ͰऴΘΒͳ͘ͳΔ ୯ҰαʔόͷͨΊ εέʔϧͰ͖ͳ͍
σʔλྔ૿େʹΑΓ ༰ྔΛṧഭ εέʔϧΞοϓͰ͙྇ ʑ
σʔλྔ૿େʹΑΓ ϝϞϦṧഭͰ($ίετ૿େ ٵ্͍͛ʹ͕࣌ؒ ͔͔ΔΑ͏ʹ
結果
当初3分間隔だったバッチ ↓ 10分間隔に
バッチ間隔が延びると・・・ • 配信設定の追加/変更や、ON/OFFなどが なかなか配信に反映されない • 予算切れになってもなかなか配信が止ま らない
アーキテクチャレベルで 刷新することを決断
アーキテクチャレベルで 刷新することを決断 ͜ͷ࣌Ͱ͜Μͳʹେมͩ ͱߟ͍͑ͯͳ͔ͬͨɾɾɾ
刷新の方針(状態目標) • DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない •
ただしレイテンシの悪化は許容範囲内に抑える
それを踏まえた実装方針1 • 配信設定のデータソースはRDBのまま • データソースまで変えると改修範囲がシステム のほぼ全域に及んでしまう • オンラインでの既存データの移行が現実的でな い •
配信時にRDBを直接参照しない点は踏襲
それを踏まえた実装方針2 • 世代ごとに毎回全量を作成する方式をやめる • 静的なデータは随時差分更新に (時間あたりの更新対象は少ない) • 動的なデータは一定間隔で全量更新 (時間あたりの更新対象は多い) •
アドサーバがキャッシュサーバを直接参照する方式から 、APIで配信データを提供する方式に
刷新版アーキテクチャ (ver.1)
None
3%#͜Ε·ͰΑΓ ߴ͍ฒྻͷΫΤϦΛࡹͨ͘Ίɺ 3FBE3FQMJDBΛཱͯͯ )"1SPYZ &-#Ͱෛՙࢄ ۤ͜͜ͷࡦɾɾɾ
Ωϟογϡαʔόʹ ৴੍ޚʹඞཁͳ੩తσʔλɺ ಈతσʔλ͕֨ೲ͞ΕΔ ͜͜ʹσʔλ͕ೖΔ͜ͱ͕ ͻͱ·ͣͷΰʔϧ
৴੍ޚ"1*͕Ξυαʔό ͔ΒͷϦΫΤετʹର͠ ΩϟογϡαʔόΛࢀরͯ͠ ϨεϙϯεΛฦ͢
δϣϒεέδϡʔϥ͕ ΩϟογϡʹࡌͤΔ σʔλͷछྨͱநग़݅ ྫ͑࠷ऴߋ৽͕Ҏͷ Ωϟϯϖʔϯͱ͔ Λύϥϝʔλʹ"1*ίʔϧ
*%1BSUJUJPOFS "1*͕ࢦఆ͞Εͨ݅Ͱ %#ʹର͠ߋ৽ରͷσʔλͷ*%Λ औಘ͢ΔͨΊʹ4&-&$5ɻ औಘͨ͠*%͝ͱʹϝοηʔδΛ ࡞͠,JOFTJTʹྲྀ͢
4ZODISPOJ[FS8PSLFS͕ ,JOFTJT͔ΒϝοηʔδΛ औΓग़ͯ֘͠*%ʹର͢Δ ΩϟογϡσʔλΛ࡞ɻ Ωϟογϡαʔόʹ165
ポイント • 更新対象のデータ種別、条件を指定できるようにし、差分 更新を可能に • 現在の設定では最終更新から5分以内の条件で毎分起動 (エラー時のリトライも兼ねて) • IDの抽出と、それに対するキャッシュデータ生成とを分離 し、Kinesis
Streamで非同期化することで並列化しやすく した
Kinesis Stream • AWSのフルマネージドなデータストリーミングサービス • 複数のConsumerアプリケーションに出力できる • シャード数を調整することで、スループットに応じたス ケーリングが設定できる •
KCLというConsumer用のクライアントライブラリが提 供されている
結果
None
ボツ
問題点1 • 並列度を上げた結果、RDBのレイヤーでRead Replica + HAProxyでもスループットが上がら ず、性能要件を満たせない • ある程度以上更新データが混み合うと急激 にスローダウンする
問題点2 • Kinesis Stream(KCL?)の特性上、シャードと クライアントとが1:1に紐づいてしまう • 特定のクライアントノードでスローダウンが 発生したときに他のノードで補い合えない • 遅いクライアントが掴んでいるシャードに入
ったメッセージがどんどん遅れてしまう
問題点2 - 図解
問題点2 - 図解
問題点2 - 図解 4IBSEʹೖͬͨϝοηʔδ͚ͩ ͲΜͲΜө͕Ε͍ͯ͘
刷新後アーキテクチャ (ver.2)
None
None
RDBをMySQLから Amazon Auroraに • AuroraはAWSが提供するMySQL互換のハイ パフォーマンス、高可用なDBエンジン • 元のMySQLと比較して、同じ構成でのスルー プットが大きく改善して一気に解決 •
アプリケーションには(既存のものも含めて) 一切手を入れなくてもよかった (素晴らしい)
RDBをMySQLから Amazon Auroraに • AWSが提供するMySQL互換のハイパフォー マンス、高可用なDBエンジン • 元のMySQLと比較して、同じ構成でのスルー プットが大きく改善して一気に解決 •
アプリケーションには(既存のものも含めて) 一切手を入れなくてもよかった (素晴らしい) 3%4Ͱͷ.Z42-ˠ "VSPSBҠߦΓ·ͨ͠ ɻ ڵຯ͋Δํ࠙ձͰ ͔ͭ·͍͑ͯͩ͘͞
非同期化部分をKinesis Stream からSQSに • SQSはAWSが提供するフルマネージド なメッセージキューイングサービス • リソースの空いているコンシューマア プリケーションがSQSにメッセージを 取りに行くため、特定のデータが遅延
していくという心配がなく、均一に
結果
None
ボツ 惜しい
問題点 • 静的なデータの更新量が多い状況下では Synchronizer Workerが混み合い、更新対象の 多い動的なデータの定期的な更新が追いつか ない • それでも更新要求は一定間隔で送り続けるた め、ジョブがどんどん溜まってしまう
刷新後アーキテクチャ (ver.3)
None
None
ver.2からの変更点 • Synchronizer Workerの後ろにさらにもう一段SQSと Worker(Indexer)を設け、動的なデータ(定期的に全量を洗い直すデ ータ)はそちらに流すようにした • Indexerは広告枠が生きている限り、インデックスデータを作成し たらまたIndexer用SQSにキューイングし、ループすることで繰り 返し処理を行う
• Indexer用のSQSには30秒の遅延キューの設定を入れた (30秒+αの時間間隔で動的データが更新される)
解決! • SQSの遅延キューの仕組みを利用し、動的デ ータが静的データの影響を受けずに一定間隔 (30秒+α)でデータがリフレッシュされる仕組 みが実現できた
None
結果
無事リリース
配信制御のリプレース 無事完了
目的は達成できたのか • DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない •
ただしレイテンシの悪化は許容範囲内に抑える
• DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない • ただしレイテンシの悪化は許容範囲内に抑える
目的は達成できたのか σʔλͷߋ৽ྔʹΑΓ্Լ͢Δ͕ ֓ͶҎͰө
• DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない • ただしレイテンシの悪化は許容範囲内に抑える
目的は達成できたのか %#ɺΩϟογϡͱΑΓɺ֤Ϟ δϡʔϧ͕ࢄฒྻॲཧͰ͖ΔΑ ͏ʹͳͬͨͨΊɺεέʔϧΞτ ʹΑΔεέʔϦϯά͕Մೳʹ
目的は達成できたのか • DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない •
ただしレイテンシの悪化は許容範囲内に抑える ฏۉϨΠςϯγ NTˠNT ͳΜͱ͔ڐ༰ൣғͱࢥ͑Δൣғʹ ͑Δ͜ͱ͕Ͱ͖ͨ
リリース後
2017年8月に完全移行 • 配信制御API • ピーク時70000qps程度 • レイテンシ3~4ms前後 • 配信への反映 •
概ね2分以内を維持
今後の課題 • 配信制御APIのレスポンスをもう少し速くしたい • 1回の配信で何度も叩かれるAPIなので、1msの改善が全体では大 きくレイテンシの改善につながる • DSP(=Demand Side Platform)などレイテンシ要件が厳しいもの
にも不安なく使えるようにしたい • インフラコストの削減 • システムが複雑化した分、インフラコストは膨らんでしまった
ご清聴ありがとうございました