Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ameba広告の配信制御を刷新した話
Search
ykoma
April 18, 2023
Technology
0
190
Ameba広告の配信制御を刷新した話
ykoma
April 18, 2023
Tweet
Share
More Decks by ykoma
See All by ykoma
ネット被害に遭わないための IDパスワード管理 / Manage IDs and passwords to avoid internet fraud
euno7
0
200
EKSクラスタをいい感じに作ろうとしたら令和になった話(前編) / We tried to build EKS cluster nicely
euno7
6
1.2k
SIerとインターネット企業のエンジニアの仕事 / Comparing work of engineer between SIer and Internet company
euno7
0
460
奥深きキャッシュの世界 / The world of profound cache
euno7
4
880
Other Decks in Technology
See All in Technology
SREによる隣接領域への越境とその先の信頼性
shonansurvivors
2
520
社内で最大の技術的負債のリファクタリングに取り組んだお話し
kidooonn
1
550
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
380
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
プロダクト活用度で見えた真実 ホリゾンタルSaaSでの顧客解像度の高め方
tadaken3
0
100
Adopting Jetpack Compose in Your Existing Project - GDG DevFest Bangkok 2024
akexorcist
0
110
組織成長を加速させるオンボーディングの取り組み
sudoakiy
2
150
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
510
RubyのWebアプリケーションを50倍速くする方法 / How to Make a Ruby Web Application 50 Times Faster
hogelog
3
940
Terraform未経験の御様に対してどの ように導⼊を進めていったか
tkikuchi
2
430
iOS/Androidで同じUI体験をネ イティブで作成する際に気をつ けたい落とし穴
fumiyasac0921
1
110
Featured
See All Featured
Product Roadmaps are Hard
iamctodd
PRO
49
11k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Practical Orchestrator
shlominoach
186
10k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Making Projects Easy
brettharned
115
5.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
RailsConf 2023
tenderlove
29
900
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
What's in a price? How to price your products and services
michaelherold
243
12k
Transcript
Ameba広告の配信制御 アーキテクチャを 刷新した話 オレシカナイト vol.3 2017-09-27
About me
About me • 駒原 雄祐 (こまはら ゆうすけ) • (株)サイバーエージェント (2010~)
MDH アドテクノロジー局所属 • サーバサイドエンジニア • Ameba Infeed開発責任者(2015~)
About me • SIer出身 • サイバーエージェント入社後 • 課金プラットフォーム • コミュニティサービス
• 2012年からAmebaの広告のお仕事 • 妻と娘(1歳)とチワワ(3歳)の3人と1匹暮らし
今日のテーマ
Ameba広告の配信制御 アーキテクチャを刷新 した話
配信制御?
ネット広告配信の流れ
None
ここに相当
作成しているデータ1 • 静的なデータ(マスタデータなど) • 広告枠などの配信面の情報 • どのフォーマットの広告を何個返すか • 配信したくないNG業種や広告主 •
出稿側の情報 • 広告主、広告キャンペーン、配信先プレースメント、入札情報など • 広告のクリエイティブ情報(画像、テキスト、動画など) etc…
作成しているデータ2 • 動的なデータ • 広告枠ごとに対する配信候補のインデック スなど (様々な条件で時々刻々と変わる)
当初のアーキテクチャ
None
ִؒ ॳ Ͱ ઃఆ%#ͷ༗ޮͳσʔλͷ શྔநग़ ৴ʹదͨ͠ܗͷՃ Ωϟογϡαʔόͷ 165
όοναʔό͕࡞ͨ͠ ΩϟογϡσʔλΛ ੈผʹอ࣋
ఆظతʹ࠷৽ੈͷϙʔϦϯά ੈ͕ߋ৽͞ΕͨΒ Ωϟογϡαʔόͷ σʔλΛٵ্͍͛ ΦϯϝϞϦͰอ࣋
良いところ • シンプルな構成でランニングコストが低い • オンメモリで必要な全データをキャッシュするため低レイテンシ • RDBと配信が切り離されているため、RDBがボトルネックになる 心配がない • RDB側のスキーマ変更等による配信への影響もない
• キャッシュ作成時に問題が起きても、次の世代の処理が成功すれば 大丈夫、という安心感
ちなみに この仕組みについて2016年に弊社公式エンジニ アブログで執筆したのでそちらもぜひご一読を https://ameblo.jp/principia-ca/entry-12145898865.html ࣌ʮ"+"ʯͱ͍͏ ϒϥϯυ໊Ͱͬͯ·͠ ͕ͨɺ͍Ζ͍Ζ͋ͬͯݱ ࡏʮ"NFCB*OGFFEʯ ͱ͍͏໊લͰͬͯ·͢
運用を続けるうちに 課題が顕在化
データ量の増加
Ϗδωε֦େʹͬͯ σʔλྔ͕૿େ
ॲཧ͕࣌ؒ͘ͳΓ ִؒͷόον͕ ͰऴΘΒͳ͘ͳΔ ୯ҰαʔόͷͨΊ εέʔϧͰ͖ͳ͍
σʔλྔ૿େʹΑΓ ༰ྔΛṧഭ εέʔϧΞοϓͰ͙྇ ʑ
σʔλྔ૿େʹΑΓ ϝϞϦṧഭͰ($ίετ૿େ ٵ্͍͛ʹ͕࣌ؒ ͔͔ΔΑ͏ʹ
結果
当初3分間隔だったバッチ ↓ 10分間隔に
バッチ間隔が延びると・・・ • 配信設定の追加/変更や、ON/OFFなどが なかなか配信に反映されない • 予算切れになってもなかなか配信が止ま らない
アーキテクチャレベルで 刷新することを決断
アーキテクチャレベルで 刷新することを決断 ͜ͷ࣌Ͱ͜Μͳʹେมͩ ͱߟ͍͑ͯͳ͔ͬͨɾɾɾ
刷新の方針(状態目標) • DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない •
ただしレイテンシの悪化は許容範囲内に抑える
それを踏まえた実装方針1 • 配信設定のデータソースはRDBのまま • データソースまで変えると改修範囲がシステム のほぼ全域に及んでしまう • オンラインでの既存データの移行が現実的でな い •
配信時にRDBを直接参照しない点は踏襲
それを踏まえた実装方針2 • 世代ごとに毎回全量を作成する方式をやめる • 静的なデータは随時差分更新に (時間あたりの更新対象は少ない) • 動的なデータは一定間隔で全量更新 (時間あたりの更新対象は多い) •
アドサーバがキャッシュサーバを直接参照する方式から 、APIで配信データを提供する方式に
刷新版アーキテクチャ (ver.1)
None
3%#͜Ε·ͰΑΓ ߴ͍ฒྻͷΫΤϦΛࡹͨ͘Ίɺ 3FBE3FQMJDBΛཱͯͯ )"1SPYZ &-#Ͱෛՙࢄ ۤ͜͜ͷࡦɾɾɾ
Ωϟογϡαʔόʹ ৴੍ޚʹඞཁͳ੩తσʔλɺ ಈతσʔλ͕֨ೲ͞ΕΔ ͜͜ʹσʔλ͕ೖΔ͜ͱ͕ ͻͱ·ͣͷΰʔϧ
৴੍ޚ"1*͕Ξυαʔό ͔ΒͷϦΫΤετʹର͠ ΩϟογϡαʔόΛࢀরͯ͠ ϨεϙϯεΛฦ͢
δϣϒεέδϡʔϥ͕ ΩϟογϡʹࡌͤΔ σʔλͷछྨͱநग़݅ ྫ͑࠷ऴߋ৽͕Ҏͷ Ωϟϯϖʔϯͱ͔ Λύϥϝʔλʹ"1*ίʔϧ
*%1BSUJUJPOFS "1*͕ࢦఆ͞Εͨ݅Ͱ %#ʹର͠ߋ৽ରͷσʔλͷ*%Λ औಘ͢ΔͨΊʹ4&-&$5ɻ औಘͨ͠*%͝ͱʹϝοηʔδΛ ࡞͠,JOFTJTʹྲྀ͢
4ZODISPOJ[FS8PSLFS͕ ,JOFTJT͔ΒϝοηʔδΛ औΓग़ͯ֘͠*%ʹର͢Δ ΩϟογϡσʔλΛ࡞ɻ Ωϟογϡαʔόʹ165
ポイント • 更新対象のデータ種別、条件を指定できるようにし、差分 更新を可能に • 現在の設定では最終更新から5分以内の条件で毎分起動 (エラー時のリトライも兼ねて) • IDの抽出と、それに対するキャッシュデータ生成とを分離 し、Kinesis
Streamで非同期化することで並列化しやすく した
Kinesis Stream • AWSのフルマネージドなデータストリーミングサービス • 複数のConsumerアプリケーションに出力できる • シャード数を調整することで、スループットに応じたス ケーリングが設定できる •
KCLというConsumer用のクライアントライブラリが提 供されている
結果
None
ボツ
問題点1 • 並列度を上げた結果、RDBのレイヤーでRead Replica + HAProxyでもスループットが上がら ず、性能要件を満たせない • ある程度以上更新データが混み合うと急激 にスローダウンする
問題点2 • Kinesis Stream(KCL?)の特性上、シャードと クライアントとが1:1に紐づいてしまう • 特定のクライアントノードでスローダウンが 発生したときに他のノードで補い合えない • 遅いクライアントが掴んでいるシャードに入
ったメッセージがどんどん遅れてしまう
問題点2 - 図解
問題点2 - 図解
問題点2 - 図解 4IBSEʹೖͬͨϝοηʔδ͚ͩ ͲΜͲΜө͕Ε͍ͯ͘
刷新後アーキテクチャ (ver.2)
None
None
RDBをMySQLから Amazon Auroraに • AuroraはAWSが提供するMySQL互換のハイ パフォーマンス、高可用なDBエンジン • 元のMySQLと比較して、同じ構成でのスルー プットが大きく改善して一気に解決 •
アプリケーションには(既存のものも含めて) 一切手を入れなくてもよかった (素晴らしい)
RDBをMySQLから Amazon Auroraに • AWSが提供するMySQL互換のハイパフォー マンス、高可用なDBエンジン • 元のMySQLと比較して、同じ構成でのスルー プットが大きく改善して一気に解決 •
アプリケーションには(既存のものも含めて) 一切手を入れなくてもよかった (素晴らしい) 3%4Ͱͷ.Z42-ˠ "VSPSBҠߦΓ·ͨ͠ ɻ ڵຯ͋Δํ࠙ձͰ ͔ͭ·͍͑ͯͩ͘͞
非同期化部分をKinesis Stream からSQSに • SQSはAWSが提供するフルマネージド なメッセージキューイングサービス • リソースの空いているコンシューマア プリケーションがSQSにメッセージを 取りに行くため、特定のデータが遅延
していくという心配がなく、均一に
結果
None
ボツ 惜しい
問題点 • 静的なデータの更新量が多い状況下では Synchronizer Workerが混み合い、更新対象の 多い動的なデータの定期的な更新が追いつか ない • それでも更新要求は一定間隔で送り続けるた め、ジョブがどんどん溜まってしまう
刷新後アーキテクチャ (ver.3)
None
None
ver.2からの変更点 • Synchronizer Workerの後ろにさらにもう一段SQSと Worker(Indexer)を設け、動的なデータ(定期的に全量を洗い直すデ ータ)はそちらに流すようにした • Indexerは広告枠が生きている限り、インデックスデータを作成し たらまたIndexer用SQSにキューイングし、ループすることで繰り 返し処理を行う
• Indexer用のSQSには30秒の遅延キューの設定を入れた (30秒+αの時間間隔で動的データが更新される)
解決! • SQSの遅延キューの仕組みを利用し、動的デ ータが静的データの影響を受けずに一定間隔 (30秒+α)でデータがリフレッシュされる仕組 みが実現できた
None
結果
無事リリース
配信制御のリプレース 無事完了
目的は達成できたのか • DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない •
ただしレイテンシの悪化は許容範囲内に抑える
• DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない • ただしレイテンシの悪化は許容範囲内に抑える
目的は達成できたのか σʔλͷߋ৽ྔʹΑΓ্Լ͢Δ͕ ֓ͶҎͰө
• DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない • ただしレイテンシの悪化は許容範囲内に抑える
目的は達成できたのか %#ɺΩϟογϡͱΑΓɺ֤Ϟ δϡʔϧ͕ࢄฒྻॲཧͰ͖ΔΑ ͏ʹͳͬͨͨΊɺεέʔϧΞτ ʹΑΔεέʔϦϯά͕Մೳʹ
目的は達成できたのか • DBでのデータ更新から配信への反映は当初と同じ3 分以内を目標 • スケールしないポイントを作らない • 全データアドサーバ上でのオンメモリにはこだわら ない •
ただしレイテンシの悪化は許容範囲内に抑える ฏۉϨΠςϯγ NTˠNT ͳΜͱ͔ڐ༰ൣғͱࢥ͑Δൣғʹ ͑Δ͜ͱ͕Ͱ͖ͨ
リリース後
2017年8月に完全移行 • 配信制御API • ピーク時70000qps程度 • レイテンシ3~4ms前後 • 配信への反映 •
概ね2分以内を維持
今後の課題 • 配信制御APIのレスポンスをもう少し速くしたい • 1回の配信で何度も叩かれるAPIなので、1msの改善が全体では大 きくレイテンシの改善につながる • DSP(=Demand Side Platform)などレイテンシ要件が厳しいもの
にも不安なく使えるようにしたい • インフラコストの削減 • システムが複雑化した分、インフラコストは膨らんでしまった
ご清聴ありがとうございました