Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
同じデータでもP値が変わる話/key_considerations_in_NHST
Search
florets1
September 02, 2023
Science
1
1.4k
同じデータでもP値が変わる話/key_considerations_in_NHST
florets1
September 02, 2023
Tweet
Share
More Decks by florets1
See All by florets1
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
35
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
330
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
390
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
400
butterfly_effect/butterfly_effect_in-house
florets1
1
220
データハンドリング/data_handling
florets1
2
220
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
280
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
Other Decks in Science
See All in Science
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
740
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
890
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
200
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
510
機械学習 - pandas入門
trycycle
PRO
0
280
機械学習 - 授業概要
trycycle
PRO
0
210
高校生就活へのDA導入の提案
shunyanoda
0
1.7k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
940
Symfony Console Facelift
chalasr
2
460
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
160
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
520
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Writing Fast Ruby
sferik
628
62k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Faster Mobile Websites
deanohume
308
31k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Typedesign – Prime Four
hannesfritz
42
2.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Bash Introduction
62gerente
613
210k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.3k
Thoughts on Productivity
jonyablonski
69
4.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
980
Transcript
1 2023.09.02 Tokyo.R #108 同じデータでもP値が変わる話
2 統計的仮説検定 同じデータからは同じ検定結果が得られるもの と考えられがちですが 実際には必ずしもその通りではありません。
3 例えば コイン投げをして24回中7回が表になるという単純な データを考えてみましょう。 このようなデータでも、実験の設定や投げる回数の制 約によって、統計的仮説検定の結果が変わることがあ るのです。
4 コインを1回投げる 𝑝 𝑦 𝜃 = 𝜃𝑦(1 − 𝜃)(1−𝑦) 𝜃
= 0.5 ベルヌーイ分布 y=1 は表, y=0 は裏
5 コインをN回投げる 裏裏表表裏裏表裏裏裏裏裏裏裏裏裏表裏裏表表裏裏表 表が出る確率 θ 投げる回数 N 表の回数 z 二項分布
6 統計的仮説検定の流れ 帰無仮説をたてる ↓ 標本分布を計算する ↓ データを観測してP値を求める
7 帰無仮説をたてる ある統計量がある値と等しいということを帰無仮説と して設定します。 例) コインの裏表が出る確率が50%と等しい 平均値が等しい
8 標本分布を計算する 帰無仮説が成り立つ場合にその統計量が従うであろう 確率分布、標本分布を計算します。 例) コインの裏表が出る確率 → 二項分布など 平均値 →
t分布など
9 データを観測してP値を求める 実際に観測された値、もしくはそれ以上に極端な値が 標本分布に占める面積、つまりそのような値が観測さ れる確率(P値)を求めます。
10 P値があらかじめ設定したしきい値(たとえば5%)よ りも小さければ、そもそも帰無仮説が間違っていたの だと結論づけます。 逆に小さくなければ帰無仮説を棄却せず、判断を保留 します。 P値で判断
11 コインを24回投げて7回表が出た このコインは公平か。 データ観測者の意図 コインを24回投げると決めていた。結果として7回表 がでた。
12 標本分布 表が出る確率 θ 投げる回数 N 表の回数 z
13 データを観測 θ = 0.5 N = 24 z =
7 P値 = 0.064 Sample Proportion z/N p(z/N)
14 Rのコード
15 コインを24回投げて7回表が出た このコインは公平か。 データ観測者の意図 7回表が出るまで投げ続けると決めていた。結果として 24回投げた。 ↓ 23回投げた時点で6回表が出ており、24回目では表が 出た。
16 標本分布 N-1回投げた時点でz-1回表が出て N回目は表
17 データを観測 θ = 0.5 z = 7 N =
24 P値 = 0.017 Sample Proportion z/N p(z/N)
18 Rのコード
19 投げる回数N 表が出る回数 z • Nを固定する意図ではP値=0.064(判断を保留) • zを固定する意図ではP値=0.017(帰無仮説を棄却) 同じデータを観測しても、観測者の意図によって 検定結果が変わる!
20 意外にも 観察者の意図やデータ収集の方法が、統計的な結果に 影響を与える可能性があるのです。 このような現象は、統計的な検定の限界や留意すべき 要点を浮き彫りにします。単に数値を見るだけではな く、実験の文脈や条件を正しく理解することの重要性 を示しています。
21 参考書 飯塚修平. ウェブ最適化ではじめる機械学習. オライ リー・ジャパン, 2020 John K. Kruschke.
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan EDITION 2. Academic Press, 2014