Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データハンドリング/data_handling
Search
florets1
July 11, 2024
Education
2
240
データハンドリング/data_handling
florets1
July 11, 2024
Tweet
Share
More Decks by florets1
See All by florets1
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
79
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
63
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
390
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
410
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.4k
直積は便利/direct_product_is_useful
florets1
3
430
butterfly_effect/butterfly_effect_in-house
florets1
1
240
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
300
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
16k
Other Decks in Education
See All in Education
核燃料政策を問う─英国の決断と日本
hide2kano
0
200
American Airlines® USA Contact Numbers: The Ultimate 2025 Guide
lievliev
0
260
ハッカソンを活用したモノづくり教育について
yusk1450
PRO
2
110
Портфолио - Шынар Ауелбекова
shynar
0
120
万博マニアックマップを支えるオープンデータとその裏側
barsaka2
0
870
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
130
中間活動報告会 人材育成WG・技術サブWG / 20250808-oidfj-eduWG-techSWG
oidfj
0
710
20250625_なんでもCopilot 一年の振り返り
ponponmikankan
0
380
情報科学類で学べる専門科目38選
momeemt
0
610
尊敬語「くださる」と謙譲語「いただく」の使い分け
hysmrk
0
100
Transición del Management al Neuromanagement
jvpcubias
0
240
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.3k
Embracing the Ebb and Flow
colly
88
4.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
How to Ace a Technical Interview
jacobian
280
24k
The Language of Interfaces
destraynor
162
25k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.6k
For a Future-Friendly Web
brad_frost
180
9.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Mobile First: as difficult as doing things right
swwweet
224
10k
Transcript
1 2024.07.13 Tokyo.R #114 データハンドリング
2 応募者の選考データ 雑然データ.csv 整然データ.csv
3 整然データは扱いやすい(1)
4 整然データは扱いやすい(2)
5 整然データは扱いやすい(3)
6 整然データは扱いやすい(4)
7 整然データは扱いやすい(5) いいところ:選考段階が三次、四次と増えてもコード変更なしで通過率を求めることができる
8 雑然データは扱いにくい(1)
9 雑然データは扱いにくい(2)
10 雑然データは扱いにくい(3) つらいところ:選考段階が増えるごとにコード変更が必要
11 雑然データを整然データに変換 整然データ.csv 雑然データ.csv pivot_longer
12 変換できたら後は同じ
13 整然データの定義(1) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。
14 整然データの定義(2) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしていない 変数が1つの列をなしていない
15 整然データの定義(3) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしていない 応募者NO.1、選考段階「一次」の観測で1行 応募者NO.1、選考段階「二次」の観測で1行 となってほしい
16 整然データの定義(4) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしている
17 整然データの定義(5) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 分ける ・一つの事実は一つの場所へ ・矛盾した登録を防げる
18 整然データの定義(6) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 1月応募.csv 2月応募.csv 3月応募.csv つなげる
19 整然データの定義(7) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 定義を満たしていない 1つのセルに複数の値が入っている
20 整然データの定義(8) 1.個々の変数が1つの列をなす。 2.個々の観測が1つの行をなす。 3.個々の観測の構成単位の類型が1つの表をなす。 4.個々の値が1つのセルをなす。 分ける
雑然データに気を付けて データハンドリングが難しいなあ と感じたら、それは 雑然データかもしれません。 雑然データのままがんばるのではなく 整然データに変換できないか 検討してみましょう。