Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
直積は便利/direct_product_is_useful
Search
florets1
October 14, 2024
Business
3
410
直積は便利/direct_product_is_useful
florets1
October 14, 2024
Tweet
Share
More Decks by florets1
See All by florets1
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
0
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
60
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
380
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
410
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
butterfly_effect/butterfly_effect_in-house
florets1
1
240
データハンドリング/data_handling
florets1
2
240
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
290
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
16k
Other Decks in Business
See All in Business
ブラインドスクエア&キーパンチ
chibanba1982
PRO
0
320
AIが実現するプロダクトオーナーと開発者の架け橋
bicstone
2
230
山協港運株式会社_会社説明_2025
sankyo
0
110
なぜ人はすれ違うのか_製造業で当たり前に行っていた根回しから考える、事前の配慮で顧客やチームとの対話を促進する方法
katsuakihoribe8
1
3.1k
新規投資家向け資料20250815
junkiogawa
0
3.1k
採用ピッチ資料/エアモビリティ株式会社
airmobility_jinji
0
2.3k
sample
mamiko
0
410
20250901_UPDATER_companysummary
updater_pr
0
89k
行動指針
fint_recruit
0
880
会社紹介資料 / ProfileBook
gpol
4
46k
株式会社BANKEY 会社説明資料(Aug.26.2025)
bankey
0
1.9k
【エンジニア職】中途採用向け会社説明資料(テックファーム株式会社)
techfirm
0
5.6k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
45
7.7k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Making Projects Easy
brettharned
117
6.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
RailsConf 2023
tenderlove
30
1.2k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
1 2024.10.19 Tokyo.R #115 直積は便利
2 タスク管理データ タスクA: 担当は秋田さんで、10/1から10/4 までの予定です。工数は32時間なので、1日 8時間で完了します。
3 タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。
4 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
5 また、福井さんの計画を詳しく見ると、工数の 偏りが見られます。例えば、 • 10月17日以降は1日4時間程度の余裕あり • 10月9日と10月10日は工数がゼロ 不均一な工数配分の見直しが必要です。
6 タスクの目視確認は困難 タスクの数が少ない場合は、前述のような問題も目視で確認できます。 しかし、プロジェクトが大規模になり、タスクが100件、さらには1000件 を超えるようになると、全体を把握することは非常に困難です。 目視での確認だけでは、見落としやミスが増えてしまうでしょう。
7 Excelでのタスク管理の限界 「Excelで自動的に確認できればいいのでは?」と考える人もいるかもし れません。しかし、Excelでタスク管理を行うのは意外と難しいのです。 複雑な関数を駆使すれば、特定の問題は解決できるかもしれませんが、別 の問題が発生した場合、さらに複雑な対応が必要になります。 例えば、月単位で集計していたデータを週単位で集計し直すといった場合、 シート全体を大幅に変更する必要があります。こうした柔軟性の欠如は、 Excelでのタスク管理の大きな制約です。
8 データ粒度の問題 タスク管理データが扱いにくい理 由の一つは、このデータの「粒 度」が粗いからです。 現在のタスク管理データでは、各 タスクは開始日と終了日だけで1行 にまとめられています。 もっと粒度を細かくして、日付単 位にしてやれば、扱いやすくなり
そうです。
9 直積 t1 t2 t3 crossing
10 タスクとカレンダーの直積 タスク カレンダー 変換 crossing
11 変換後のデータでタスク確認 タスクA: 担当は秋田さんで、10/1から 10/4までの予定です。工数は32時間なの で、 1日8時間で完了します。
タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。 12 変換後のデータでタスク確認
13 変換後のデータでタスク確認 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
福井さんの計画を詳しく見ると、工数の偏 りが見られます。 10月17日以降は1日4時間程度の余裕があり ます。このような不均一な工数配分も見直 しが必要です。 14 変換後のデータでタスク確認
15 タスク割当無しを見つけることもできる カレンダー メンバー 変換後のデータ crossing left_join
16 タスク割当無しを見つけることもできる
17 × ×
18 直積の威力 直積を使ってタスク管理データを変換し、粒度を細かくしました。 柔軟な集計が可能: 日付ごとにデータを持つことで、日次、週次、月次の 集計をコード修正のみで容易に行えるようになります。 負荷の平準化が容易: 各担当者の工数を日別に把握できるため、特定の日 に工数が集中していないか、計画の不均一性を視覚的に確認できます。 自動化のしやすさ:
プロジェクトの進行に合わせてタスク管理データを自 動的に更新・集計することが可能です。これにより、大規模プロジェクト でもタスク管理が効率的に行えます。