$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
直積は便利/direct_product_is_useful
Search
florets1
October 14, 2024
Business
3
440
直積は便利/direct_product_is_useful
florets1
October 14, 2024
Tweet
Share
More Decks by florets1
See All by florets1
Tableauとggplot2の背景/Background_of_Tableau_and_ggplot2
florets1
0
43
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
110
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
70
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
420
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
430
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.4k
butterfly_effect/butterfly_effect_in-house
florets1
1
250
データハンドリング/data_handling
florets1
2
250
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
310
Other Decks in Business
See All in Business
不感対策ソリューション 詳細資料
jtes
0
350
センス・トラスト福利厚生
sensetrust
0
1.4k
ドキュメント作成の3原則
naohiro_nakata
1
150
生成AI専任営業が語るre:Inventで発表された生成AIアップデート情報
suzakiyoshito
0
190
YADOKARI CULTURE DECK 2025
yadokari
0
140
AIエージェントウェビナー_20251118_suzaki
suzakiyoshito
0
420
アッテル会社紹介資料/culture deck
attelu
11
16k
jinjer recruiting pitch
jinjer_official
0
100k
VISASQ: ABOUT DEV TEAM
eikohashiba
6
38k
アシスト 会社紹介資料
ashisuto_career
3
140k
コーポレートストーリー(新規投資家様向け会社説明資料)
gatechnologies
1
15k
経理・労務の経験者(ドメインエキスパート) が持つ、無限の可能性
jun_nemoto
0
600
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Facilitating Awesome Meetings
lara
57
6.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
YesSQL, Process and Tooling at Scale
rocio
174
15k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
The Invisible Side of Design
smashingmag
302
51k
Side Projects
sachag
455
43k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
What's in a price? How to price your products and services
michaelherold
246
13k
Transcript
1 2024.10.19 Tokyo.R #115 直積は便利
2 タスク管理データ タスクA: 担当は秋田さんで、10/1から10/4 までの予定です。工数は32時間なので、1日 8時間で完了します。
3 タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。
4 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
5 また、福井さんの計画を詳しく見ると、工数の 偏りが見られます。例えば、 • 10月17日以降は1日4時間程度の余裕あり • 10月9日と10月10日は工数がゼロ 不均一な工数配分の見直しが必要です。
6 タスクの目視確認は困難 タスクの数が少ない場合は、前述のような問題も目視で確認できます。 しかし、プロジェクトが大規模になり、タスクが100件、さらには1000件 を超えるようになると、全体を把握することは非常に困難です。 目視での確認だけでは、見落としやミスが増えてしまうでしょう。
7 Excelでのタスク管理の限界 「Excelで自動的に確認できればいいのでは?」と考える人もいるかもし れません。しかし、Excelでタスク管理を行うのは意外と難しいのです。 複雑な関数を駆使すれば、特定の問題は解決できるかもしれませんが、別 の問題が発生した場合、さらに複雑な対応が必要になります。 例えば、月単位で集計していたデータを週単位で集計し直すといった場合、 シート全体を大幅に変更する必要があります。こうした柔軟性の欠如は、 Excelでのタスク管理の大きな制約です。
8 データ粒度の問題 タスク管理データが扱いにくい理 由の一つは、このデータの「粒 度」が粗いからです。 現在のタスク管理データでは、各 タスクは開始日と終了日だけで1行 にまとめられています。 もっと粒度を細かくして、日付単 位にしてやれば、扱いやすくなり
そうです。
9 直積 t1 t2 t3 crossing
10 タスクとカレンダーの直積 タスク カレンダー 変換 crossing
11 変換後のデータでタスク確認 タスクA: 担当は秋田さんで、10/1から 10/4までの予定です。工数は32時間なの で、 1日8時間で完了します。
タスクF: 担当は福井さんで、10/1から10/8 までの予定です。工数は64時間ですが、期 間中に土日が含まれるため、実際の稼働日 は6日間しかありません。そのため、1日の 工数は10時間を超えてしまいます。福井さ んは残業が発生しそうです。 12 変換後のデータでタスク確認
13 変換後のデータでタスク確認 次に、10月11日の秋田さんに注目します。 この日はタスクBとタスクCを担当する予定 ですが、それぞれ1日あたりの工数が8時間 で、合計16時間となってしまいます。この ため、計画の見直しが必要です。
福井さんの計画を詳しく見ると、工数の偏 りが見られます。 10月17日以降は1日4時間程度の余裕があり ます。このような不均一な工数配分も見直 しが必要です。 14 変換後のデータでタスク確認
15 タスク割当無しを見つけることもできる カレンダー メンバー 変換後のデータ crossing left_join
16 タスク割当無しを見つけることもできる
17 × ×
18 直積の威力 直積を使ってタスク管理データを変換し、粒度を細かくしました。 柔軟な集計が可能: 日付ごとにデータを持つことで、日次、週次、月次の 集計をコード修正のみで容易に行えるようになります。 負荷の平準化が容易: 各担当者の工数を日別に把握できるため、特定の日 に工数が集中していないか、計画の不均一性を視覚的に確認できます。 自動化のしやすさ:
プロジェクトの進行に合わせてタスク管理データを自 動的に更新・集計することが可能です。これにより、大規模プロジェクト でもタスク管理が効率的に行えます。