Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Large scale graph processing with apache giraph
Search
André Kelpe
May 23, 2012
Programming
2
5.4k
Large scale graph processing with apache giraph
André Kelpe
May 23, 2012
Tweet
Share
More Decks by André Kelpe
See All by André Kelpe
Cascading 3 and beyond
fs111
0
160
The Cascading (big) data application framework
fs111
1
230
SELECT ALL THE THINGS - Cascading Lingual, ANSI SQL for Apache Hadoop
fs111
0
190
A whirlwind tour through Lingual: ANSI SQL for Apache Hadoop
fs111
1
180
Tor for everyone!
fs111
0
170
Other Decks in Programming
See All in Programming
Ethereum_.pdf
nekomatu
0
460
『ドメイン駆動設計をはじめよう』のモデリングアプローチ
masuda220
PRO
8
540
ふかぼれ!CSSセレクターモジュール / Fukabore! CSS Selectors Module
petamoriken
0
150
アジャイルを支えるテストアーキテクチャ設計/Test Architecting for Agile
goyoki
9
3.3k
型付き API リクエストを実現するいくつかの手法とその選択 / Typed API Request
euxn23
8
2.2k
EventSourcingの理想と現実
wenas
6
2.3k
Flutterを言い訳にしない!アプリの使い心地改善テクニック5選🔥
kno3a87
1
150
受け取る人から提供する人になるということ
little_rubyist
0
230
.NET のための通信フレームワーク MagicOnion 入門 / Introduction to MagicOnion
mayuki
1
1.4k
C++でシェーダを書く
fadis
6
4.1k
TypeScript Graph でコードレビューの心理的障壁を乗り越える
ysk8hori
2
1.1k
Arm移行タイムアタック
qnighy
0
310
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
4
120
How to Ace a Technical Interview
jacobian
276
23k
Speed Design
sergeychernyshev
24
610
Building a Scalable Design System with Sketch
lauravandoore
459
33k
RailsConf 2023
tenderlove
29
900
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Embracing the Ebb and Flow
colly
84
4.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Transcript
Large scale graph processing with apache giraph André Kelpe @fs111
http://kel.pe
graphs 101
vertices and edges
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
graphs are everywhere road network, the www, social graphs etc.
graphs can be huge
google knows!
Pregel
Pregel by google Describes graph processing approach based on BSP
(Bulk Synchronous Parallel)
pro-tip: search for „pregel_paper.pdf“ on github ;-)
Properties of Pregel batch-oriented, scalable, fault tolerant processing of graphs
It is not a graph database It is a processing
framework
BSP vertex centric processing in so called supersteps
BSP vertices send messages to each other
BSP synchronization points between supersteps
execution of superstep S Each vertex processes messages generated in
S-1 and send messages to be processed in S+1 and determines to halt.
None
apache giraph
giraph Loose implementation of Pregel ideas on top of Hadoop
M/R coming from yahoo
apache giraph http://incubator.apache.org/giraph/
giraph avoid overhead of classic M/R process but reuse existing
infrastructure
giraph simple map jobs in master worker setup. coordination via
zookeeper. messaging via own RPC protocol. in memory processing. custom input and output formats.
current status version 0.1 released compatible with a multitude of
hadoop versions (we use CDH3 at work) still lots of things to do, join the fun!
the APIs the APIs
Vertex-API /** *@param <I> vertex id * @param <V> vertex
data * @param <E> edge data * @param <M> message data */ class BasicVertex<I extends WritableComparable, V extends Writable, E extends Writable, M extends Writable> void compute(Iterator<M> msgIterator); void sendMsg(I id, M msg); void voteToHalt();
Shortest path example https://cwiki.apache.org/confl uence/display/GIRAPH/Shorte st+Paths+Example
v2 v5 v4 v7 v3 v8 v6 v1 v9 v8
v10 simple graph
private boolean isSource() { return (getVertexId().get() == getContext().getConfiguration().getLong(SOURCE_ID, SOURCE_ID_DEFAULT)); }
@Override public void compute(Iterator<DoubleWritable> msgIterator) { if (getSuperstep() == 0) { setVertexValue(new DoubleWritable(Double.MAX_VALUE)); } double minDist = isSource() ? 0d : Double.MAX_VALUE; while (msgIterator.hasNext()) { minDist = Math.min(minDist, msgIterator.next().get()); } if (minDist < getVertexValue().get()) { setVertexValue(new DoubleWritable(minDist)); for (Edge<LongWritable, FloatWritable> edge : getOutEdgeMap().values()) { sendMsg(edge.getDestVertexId(), new DoubleWritable(minDist + edge.getEdgeValue().get())); } } voteToHalt(); }
GiraphJob job = new GiraphJob(getConf(), getClass().getName()); job.setVertexClass(SimpleShortestPathVertex.class); job.setVertexInputFormatClass(SimpleShortestPathsVertexInputFormat.class); job.setVertexOutputFormatClass( SimpleShortestPathsVertexOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(„/foo/bar/baz“)); FileOutputFormat.setOutputPath(job, new Path(„/foo/bar/quux“)); job.getConfiguration().setLong(SimpleShortestPathsVertex.SOURCE_ID, Long.parseLong(argArray[2])); job.setWorkerConfiguration(minWorkers, maxWorkers), 100.0f); GiraphJob
see also http://incubator.apache.org/giraph/ https://cwiki.apache.org/confluence/displ ay/GIRAPH/Shortest+Paths+Example http://googleresearch.blogspot.com/2009/ 06/large-scale-graph-computing-at- google.html
Thanks! Questions?