Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新人スクラムマスターが開発者と兼任しながらやってきた事と成果/What the newcome...
Search
futabooo
January 12, 2018
Technology
1
1.9k
新人スクラムマスターが開発者と兼任しながらやってきた事と成果/What the newcomer Scrum Master came while concurrently serving as a developer and the result
futabooo
January 12, 2018
Tweet
Share
More Decks by futabooo
See All by futabooo
Android Jetpack Navigation Deep Links Tips
futaboooo
0
610
チームの学びを活かす全社での取り組み / company wide efforts to make use of team's learning
futaboooo
1
730
ペアプロ・モブプロを広めるのに役立ったControl Chartの使い方 / How to use Control Chart which helped spread Pair or Mob Programing
futaboooo
2
310
スクラムチームをやめて、20人でカンバン運用してきた半年間の軌跡 / Stop Scrum Start Kanban
futaboooo
19
18k
InvisionのAndroidアプリでみる4つのデザイン基本原則 / Four design basic principles seen in Invision's Android application
futaboooo
2
2.4k
Pairsの開発のすべて / all of Pairs development
futaboooo
1
2.6k
モブプログラミングという開発スタイル、あるいは生産性について / On development style called mob programming, or productivity
futaboooo
5
8.8k
Androidでスクレイピングした話 / Talk of scraping with Android
futaboooo
0
5.3k
What I did for Google IO since then
futaboooo
1
430
Other Decks in Technology
See All in Technology
Kiro を用いたペアプロのススメ
taikis
4
1.8k
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.2k
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
5
2.1k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
330
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
500
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.7k
ESXi のAIOps だ!2025冬
unnowataru
0
360
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
Claude Codeを使った情報整理術
knishioka
10
5.9k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
170
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
950
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
69
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Facilitating Awesome Meetings
lara
57
6.7k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
130
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Getting science done with accelerated Python computing platforms
jacobtomlinson
0
78
ラッコキーワード サービス紹介資料
rakko
0
1.8M
Transcript
৽ਓεΫϥϜϚελʔ͕։ൃऀΛ݉ ͠ͳ͕Β͖ͬͯͨࣄͱՌ @futabooo eureka x Nulab εΫϥϜ։ൃͷݱ 2018/01/12 #eureka_meetup
2 About me 4FOJPS&OHJOFFS4DSVN.BTUFSBUFVSFLB *OD +BWB ,PUMJO (PMBOH
5ZQF4DSJQU "OHVMBS+4 'BOUBTZ&BSUI;FSP T$3:FE 4QMBUPPO GVUBCPPP ɹɹTakahiro Futagawa 2
3 About eureka ैۀһ ໊ʢฏۉྸࡀʣ ࣄۀ༰
ࣗࣾαʔϏεاըɾ։ൃɾӡӦ 1BJST $PVQMFT
4 Agenda εΫϥϜϚελʔʹͳͬͨܦҢ εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ ͬͯΈ͔ͯͬͨ͜ͱ
εΫϥϜϚελʔʹͳͬͨܦҢ
6 εΫϥϜϚελʔʹͳͬͨܦҢ ࠓ͔Β͓લ͕εΫϥϜϚελʔͩʂ ͱͱڵຯ͕͋ͬͨ ઌʹࣾͷνʔϜ͕ίʔνͷͱεΫϥϜ։ൃΛͬͯͨ શࣾʹ͛ΔλΠϛϯάͰ໋
εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ
8 εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ εΫϥϜͷࣝΛΠϯϓοτ͢Δ Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ εΫϥϜΠϕϯτͷਪਐΛߦ͏ ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ
9 εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ εΫϥϜͷࣝΛΠϯϓοτ͢Δ Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ εΫϥϜΠϕϯτͷਪਐΛߦ͏ ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ
10 εΫϥϜͷࣝΛΠϯϓοτ͢Δ ಡॻ εΫϥϜΨΠυ 4$36.#005$".15)�, ΞδϟΠϧͳݟੵΓͱܭըͮ͘Γ
FUD
11 εΫϥϜͷࣝΛΠϯϓοτ͢Δ ษڧձʹࢀՃ͢Δ ୈճ4DSVNNBTUFST/JHIU ΦʔϖϯεϖʔεςΫϊϩδʔ 5IF-BXPG5XPGFFU
ຊͷᎄ IUUQGVUBCPPPIBUFOBCMPHDPNFOUSZ
12 εΫϥϜͷࣝΛΠϯϓοτ͢Δ ίʔν ٙʹࢥͬͨͱ͜ΖΛ࣭͢Δ ૬ஊϕʔεͰཧղΛਂΊΔ ଞͷεΫϥϜϚελʔ
͋ΕͲ͏ͯ͠Δʁͱ͔͓ͯ͠ޓ͍ͷݟΛަ͢Δ εΫϥϜϚελʔఆྫ͕͋Δ
13 εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ εΫϥϜͷࣝΛΠϯϓοτ͢Δ Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ εΫϥϜΠϕϯτͷਪਐΛߦ͏ ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ
14 Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ ݪཧɾݪଇΛ͑Δ ಁ໌ੑɾݕࠪɾదԠ εΫϥϜͷ֤छΠϕϯτΔͷਖ਼׳ΕΔ·Ͱ͠ΜͲ͍ ͳͥΔͷ͔Λෲམͪͯ͠ཧղͯ͠Β͏͜ͱ͕ॏཁ
15 Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ ର͢Δ Կ͔Λ͑Δ࣌ʹ૬खͷݴͬͯΔ͜ͱΛͪΌΜͱฉ͘ ࣗͷݴ༿Ͱઆ໌͢Δ
16 εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ εΫϥϜͷࣝΛΠϯϓοτ͢Δ Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ εΫϥϜΠϕϯτͷਪਐΛߦ͏ ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ
17 εΫϥϜΠϕϯτͷਪਐΛߦ͏ ֤छεΫϥϜΠϕϯτͷΧϨϯμʔΛ͑Δ େࣄ
18 εΫϥϜΠϕϯτͷਪਐΛߦ͏ Πϕϯτͷ։࢝લʹ४උΛ͓ͯ͘͠ େࣄ ࣗͷதͰΰʔϧ૾͓ͯ͘͠ ϗϫΠτϘʔυʹλΠτϧॻ͍͓ͯ͘ͱ͔Δ
19 εΫϥϜϚελʔʹͳͬͯͬͨ͜ͱ εΫϥϜͷࣝΛΠϯϓοτ͢Δ Πϯϓοτͨࣝ͠ΛνʔϜʹ͑Δ εΫϥϜΠϕϯτͷਪਐΛߦ͏ ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ
20 ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ ϦΞϧΧϯόϯΛͭ͘Δ 1#*+*3" 4#*ϦΞϧΧϯόϯ
21 ଞʹΑ͘Θ͔ΒΜ͚Ͳͬͨ͜ͱհ 5SFMMPͰͷ,15Ϙʔυ ࢥ͍͍ͭͨ࣌ʹ͍ͭͰॻ͍͓͚ͯΔΑ͏ʹ͢Δ ฒߦͯ͠Ϧετ࡞͚ͬͯͨͲ͋Μ·ΓϫʔΫ͠ͳ͔ͬͨ
όʔνϟϧϢʔνϡʔόʔͷΠϥετ
தೋපͷΠϥετ
ͬͯΈ͔ͯͬͨ͜ͱ
25 ͬͯΈ͔ͯͬͨ͜ͱ େͳͷࣦͬͯॳΊͯؾͮ͘ 4.͕ϨτϩεϖΫςΟϒͱεϓϦϯτϓϥϯχϯάͷʹٳΜͩʂ νʔϜͷਓ͕4.λεΫʹҙ͕ࣝ͘Α͏ʹͳͬͨ ࠓͬͯΔ͜ͱΛແͯ͘͠ΈΔҊ֎͍Βͳ͔ͬͨΓ͢Δ͔
26 ͬͯΈ͔ͯͬͨ͜ͱ ίʔτͷͬͪ͜ଆʹ͍ΔશһΕͳ͘ຯํ ൷తͳԠΛड͚Δ͜ͱ͋Δ͕ಉ͡ձࣾɺνʔϜͷਓؒຯํ ΈΜͳϓϩμΫτΛྑ͍ͨ͘͠͠͏·͘ಇ͖͍ͨ ͚ࣗͩͰ͏·͘Δඞཁͳ͍νʔϜͰΔ
27 ͬͯΈ͔ͯͬͨ͜ͱ ͬͺΓ݉ྑ͘ͳ͍ ၆ᛌͯ͠ݟΕΔҐஔɾظؒΛҡ࣋Ͱ͖ͳ͘ͳΔ ҰาҾ͍ͯΔํ͕՝ʹؾ͖͍ͮ͢ ͦΕͰΔͳΒ
ྠ൪εΫϥϜϚελʔͱ͔ͬͯΈΔͷྑͦ͞͏ εΩϧϚοϓ࡞ͬͯόϥϯεΈ໋ͯͱ͔͋Γ͔
None
29 ͬͯΈ͔ͯͬͨ͜ͱ εΫϥϜϚελʔεΩϧ +BWBͱ͔,PUMJOΛॻ͚ΔΑ͏ʹͳΔͨΊʹֶͿͷͱҰॹ εΩϧͳͷͰΕ͋Δఔ୭ͰͰ͖ΔΑ͏ʹͳΔʢͱࢥ͏ʣ εΩϧ࣋ͬͯΔਓͱϖΞͰΔ΄͏͕ѹతʹ֮͑Δͷૣ͍
·ͱΊ
31 ·ͱΊ ΜͩΒεΫϥϜΨΠυ εΫϥϜϚελʔͱ։ൃऀͷ݉ͬͺΓྑ͘ͳ͍ εΫϥϜϚελʔͱ͍͑νʔϜͷҰһɺࠔͬͨΒνʔϜʹϔϧϓΛٻΊΔ εΫϥϜϚελʔεΩϧ
͍͞͝ʹ
‘’εΫϥϜվળͷͨΊͷϑϨʔϜϫʔΫ Ͱํ๏Ͱͳ͍ɻ ශࠔͰ੬ऑͰվળͷ͜ͱ͔͠ߟ͑ͯͳ͍ ܦݧओٛɻ ܦݧ͢ΔҎ্ʹֶͳ͍ɺ Βͳ͍ͱΘ͔Βͳ͍ɻ’’ ͬͯΈ·͠ΐ͏
5IBOLZPV