Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
リアルIPのカード作成自動化への挑戦
Search
gree_tech
PRO
October 25, 2022
Technology
0
650
リアルIPのカード作成自動化への挑戦
GREE Tech Conference 2022で発表された資料です。
https://techcon.gree.jp/2022/session/TrackB-6
gree_tech
PRO
October 25, 2022
Tweet
Share
More Decks by gree_tech
See All by gree_tech
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
67
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
1.4k
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
470
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
460
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
440
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
500
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
850
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
530
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
640
Other Decks in Technology
See All in Technology
既存の開発資産を活かしながら、 《新規開発コスト抑制》と《開発体験向上》 を両立する拡張アーキテクチャ事例
kubell_hr
0
240
CARTA HOLDINGS エンジニア向け 採用ピッチ資料 / CARTA-GUIDE-for-Engineers
carta_engineering
0
27k
Previewでもここまで追える! Azure AI Foundryで始めるLLMトレース
tomodo_ysys
2
720
Ruby on Rails の楽しみ方
morihirok
6
2.8k
非root化Androidスマホでも動く仮想マシンアプリを試してみた
arkw
0
130
Serverlessだからこそコードと設計にはこだわろう
kenichirokimura
3
1.1k
名単体テスト 禁断の傀儡(モック)
iwamot
PRO
1
290
Developer 以外にこそ使って欲しい Amazon Q Developer
mita
0
150
インフラからSREへ
mirakui
19
6.5k
"発信文化"をどうやって計測する?技術広報のKPI探索記/How do we measure communication culture?
bitkey
4
320
250510 StepFunctionのテスト自動化始めました vol.1
east_takumi
1
250
Google Cloud Next 2025 Recap マーケティング施策の運用及び開発を支援するAIの活用 / Use of AI to support operation and development of marketing campaign
atsushiyoshikawa
0
280
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
23
1.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
We Have a Design System, Now What?
morganepeng
52
7.6k
A Tale of Four Properties
chriscoyier
159
23k
Gamification - CAS2011
davidbonilla
81
5.3k
Embracing the Ebb and Flow
colly
85
4.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
Balancing Empowerment & Direction
lara
0
21
Bash Introduction
62gerente
613
210k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.6k
Transcript
グリーエンターテインメント チーフクライアントエンジニア 立花 祐一郎 リアルIPのカード作成自動化への 挑戦
氏名 立花 祐一郎 所属 グリーエンターテインメント株式会社 担当 チーフクライアントエンジニア 経歴 モバイルゲーム会社から2019年にファンプレックス (現グリーエンターテインメント)に転籍。 以降、ゲーム運用フェーズにて
サーバー・クライアント開発、社外調整、管理業務と幅広く従事。 自己紹介 2
グリーエンターテインメントの紹介 3
目次 1. リアルIPって何? 2. カード作成自動化の経緯 3. カード作成自動化の取り組み 4. 残された課題 5.
まとめ 4
5 リアルIPって何?
リアルIPの定義 現実のアイドルやアーティストなどを扱った知的財産 6
リアルIPを用いたゲームの特徴 写真を加工してカード化などを行う 7
8 カード作成自動化の経緯
9 留意事項 • 本セッションのリアルIPのゲームですが、権利関係の都合でタイト ル公表NGとなっております。 • そのため、カード作成の自動化に使われた実際の写真や ゲーム 内のスクショは本セッションでは紹介できません。
カード作成自動化の経緯について 弊社のリアルIPゲームの作成したカード枚数... 年間 数百枚以上!! 10
作成カードの例 ゲーム内レアリティに沿ってカードの豪華さが変化する 11
自動化に適した条件 一番レアリティの低いNカードに関して 12 • 正面顔 • シンプルな背景 • 加工が控えめ
自動化に適した条件 全カードのうち6割がNカード 13 枚数 >
14 カード作成自動化の取り組み
自動化の大まかな流れ① 切り抜き 背景除去
自動化の大まかな流れ② 16 カード に適用 データ の読み 込み 山田太郎 カードの説明
顔の切り抜き 切り抜き 背景除去
顔の切り抜きルール • 目と鼻の位置を基準に切り取る 18
顔検出方法の選定 • 目と鼻の位置が検出可能 • APIを呼び出すだけで使える手軽なもの 19
選定時の候補 • OpenCV • カスケード分類器 • ディープラーニング • AWS Recognition
20
カスケード分類器 メリット • 情報が豊富 デメリット • 顔検知の精度は低い • パラメーターの調整が必要 21
ディープラーニング(YuNet) メリット • 高速かつ精度の高い顔検出ができる デメリット ・特になし 22
AWS Recognition メリット • 簡単かつ非常に精度が高い デメリット • 1枚当たり0.0013USDの費用が発生 • 外部APIの呼び出しなので通信が必要
23
24 カスケード 分類器 ディープラーニング(YuNet) AWS Recognition 精度 誤検知あり 良好 非常に良好
費用 無料 無料 0.0013USD/枚
顔検出手法の決定 精度の高いAWS Recognitionを採用 25 OpenCV AWS Recognition
AWS Recognitionの顔検出APIレスポンス 主要なレスポンス要素 • Bouding Box • 画像の赤枠 • Confidence
• 信頼値。検出した顔の正確性 • Landmarks • 画像の青丸 26
AWS Recognitionのつまづいた点 S3から落としてきた画像の向きが勝手に変わってしまう 27
EXIFメタデータ 写真で撮影した画像のメタデータ メタデータの例 • 写真の向き • カメラやスマホの種類 • 著作権 •
撮影地点 28
Exifの値を参照して向きを補正するサンプル Pythonのサンプルコード 29
Exifの値を参照して向きを補正するサンプル • 方向のメタデータの値は1~8 (例) • 1ならばそのまま • 2ならば反転 30
背景除去 切り抜き 背景除去
背景除去 1. Photoshopの「被写体を選択」 2. マスク適用 32
Photoshopの「被写体を選択」 • 1クリックで、人物の輪郭を選択する機能 • 以下に該当する場合は選択範囲が取れない可能性が高くなる • 被写体が複数 • 背景が複雑 33
「被写体を選択」をスクリプトから呼び出す Photoshopの「アクション」機能 • Photoshopの操作を録画・再生できる機能 • 馴染みのないPhotoshop処理も簡単に自動化できる 34
後の工程 Photoshopスクリプトで全て自動化 35 カード に適用 データ の読み 込み 山田太郎 カードの説明
結果 色調整を除けば、7~8割の精度でカードの自動生成が可能 36
残された課題 37
残された課題 色味の調整 ・照明などの影響を埋める調整が必要 38
まとめ • 7~8割の精度でカード自動生成が出来た • AWS Recognitionは、お手軽かつ精度高く顔検出サービス • Photoshopの機能にも自動化に使えるものがある • 色調整が今後の課題
39
40