Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
リアルIPのカード作成自動化への挑戦
Search
gree_tech
PRO
October 25, 2022
Technology
0
730
リアルIPのカード作成自動化への挑戦
GREE Tech Conference 2022で発表された資料です。
https://techcon.gree.jp/2022/session/TrackB-6
gree_tech
PRO
October 25, 2022
Tweet
Share
More Decks by gree_tech
See All by gree_tech
LLM翻訳ツールの開発と海外のお客様対応等への社内導入事例
gree_tech
PRO
0
340
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
350
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
330
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
340
「魔法少女まどか☆マギカ Magia Exedra」での負荷試験の実践と学び
gree_tech
PRO
0
340
「魔法少女まどか☆マギカ Magia Exedra」の必殺技演出を徹底解剖! -キャラクターの魅力を最大限にファンに届けるためのこだわり-
gree_tech
PRO
0
340
ヒューリスティック評価を用いたゲームQA実践事例
gree_tech
PRO
0
340
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
340
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
140
Other Decks in Technology
See All in Technology
Goss: New Production-Ready Go Binding for Faiss #coefl_go_jp
bengo4com
1
1.1k
ここ一年のCCoEとしてのAWSコスト最適化を振り返る / CCoE AWS Cost Optimization devio2025
masahirokawahara
1
810
『FailNet~やらかし共有SNS~』エレベーターピッチ
yokomachi
1
180
そのコンポーネント、サーバー?クライアント?App Router開発のモヤモヤを可視化する補助輪
makotot
4
770
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
1
200
AIとTDDによるNext.js「隙間ツール」開発の実践
makotot
6
790
異業種出身エンジニアが気づいた、転向して十数年経っても変わらない自分の武器とは
macnekoayu
0
230
DuckDB-Wasmを使って ブラウザ上でRDBMSを動かす
hacusk
1
130
Product Management Conference -AI時代に進化するPdM-
kojima111
0
270
トヨタ生産方式(TPS)入門
recruitengineers
PRO
5
1.3k
退屈なことはDevinにやらせよう〜〜Devin APIを使ったVisual Regression Testの自動追加〜
kawamataryo
4
930
スプリントレトロスペクティブはチーム観察の宝庫? 〜チームの衝突レベルに合わせたアプローチ仮説!〜
electricsatie
1
130
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
GitHub's CSS Performance
jonrohan
1032
460k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Six Lessons from altMBA
skipperchong
28
4k
For a Future-Friendly Web
brad_frost
179
9.9k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Speed Design
sergeychernyshev
32
1.1k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Automating Front-end Workflow
addyosmani
1370
200k
Transcript
グリーエンターテインメント チーフクライアントエンジニア 立花 祐一郎 リアルIPのカード作成自動化への 挑戦
氏名 立花 祐一郎 所属 グリーエンターテインメント株式会社 担当 チーフクライアントエンジニア 経歴 モバイルゲーム会社から2019年にファンプレックス (現グリーエンターテインメント)に転籍。 以降、ゲーム運用フェーズにて
サーバー・クライアント開発、社外調整、管理業務と幅広く従事。 自己紹介 2
グリーエンターテインメントの紹介 3
目次 1. リアルIPって何? 2. カード作成自動化の経緯 3. カード作成自動化の取り組み 4. 残された課題 5.
まとめ 4
5 リアルIPって何?
リアルIPの定義 現実のアイドルやアーティストなどを扱った知的財産 6
リアルIPを用いたゲームの特徴 写真を加工してカード化などを行う 7
8 カード作成自動化の経緯
9 留意事項 • 本セッションのリアルIPのゲームですが、権利関係の都合でタイト ル公表NGとなっております。 • そのため、カード作成の自動化に使われた実際の写真や ゲーム 内のスクショは本セッションでは紹介できません。
カード作成自動化の経緯について 弊社のリアルIPゲームの作成したカード枚数... 年間 数百枚以上!! 10
作成カードの例 ゲーム内レアリティに沿ってカードの豪華さが変化する 11
自動化に適した条件 一番レアリティの低いNカードに関して 12 • 正面顔 • シンプルな背景 • 加工が控えめ
自動化に適した条件 全カードのうち6割がNカード 13 枚数 >
14 カード作成自動化の取り組み
自動化の大まかな流れ① 切り抜き 背景除去
自動化の大まかな流れ② 16 カード に適用 データ の読み 込み 山田太郎 カードの説明
顔の切り抜き 切り抜き 背景除去
顔の切り抜きルール • 目と鼻の位置を基準に切り取る 18
顔検出方法の選定 • 目と鼻の位置が検出可能 • APIを呼び出すだけで使える手軽なもの 19
選定時の候補 • OpenCV • カスケード分類器 • ディープラーニング • AWS Recognition
20
カスケード分類器 メリット • 情報が豊富 デメリット • 顔検知の精度は低い • パラメーターの調整が必要 21
ディープラーニング(YuNet) メリット • 高速かつ精度の高い顔検出ができる デメリット ・特になし 22
AWS Recognition メリット • 簡単かつ非常に精度が高い デメリット • 1枚当たり0.0013USDの費用が発生 • 外部APIの呼び出しなので通信が必要
23
24 カスケード 分類器 ディープラーニング(YuNet) AWS Recognition 精度 誤検知あり 良好 非常に良好
費用 無料 無料 0.0013USD/枚
顔検出手法の決定 精度の高いAWS Recognitionを採用 25 OpenCV AWS Recognition
AWS Recognitionの顔検出APIレスポンス 主要なレスポンス要素 • Bouding Box • 画像の赤枠 • Confidence
• 信頼値。検出した顔の正確性 • Landmarks • 画像の青丸 26
AWS Recognitionのつまづいた点 S3から落としてきた画像の向きが勝手に変わってしまう 27
EXIFメタデータ 写真で撮影した画像のメタデータ メタデータの例 • 写真の向き • カメラやスマホの種類 • 著作権 •
撮影地点 28
Exifの値を参照して向きを補正するサンプル Pythonのサンプルコード 29
Exifの値を参照して向きを補正するサンプル • 方向のメタデータの値は1~8 (例) • 1ならばそのまま • 2ならば反転 30
背景除去 切り抜き 背景除去
背景除去 1. Photoshopの「被写体を選択」 2. マスク適用 32
Photoshopの「被写体を選択」 • 1クリックで、人物の輪郭を選択する機能 • 以下に該当する場合は選択範囲が取れない可能性が高くなる • 被写体が複数 • 背景が複雑 33
「被写体を選択」をスクリプトから呼び出す Photoshopの「アクション」機能 • Photoshopの操作を録画・再生できる機能 • 馴染みのないPhotoshop処理も簡単に自動化できる 34
後の工程 Photoshopスクリプトで全て自動化 35 カード に適用 データ の読み 込み 山田太郎 カードの説明
結果 色調整を除けば、7~8割の精度でカードの自動生成が可能 36
残された課題 37
残された課題 色味の調整 ・照明などの影響を埋める調整が必要 38
まとめ • 7~8割の精度でカード自動生成が出来た • AWS Recognitionは、お手軽かつ精度高く顔検出サービス • Photoshopの機能にも自動化に使えるものがある • 色調整が今後の課題
39
40