Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
リアルIPのカード作成自動化への挑戦
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
gree_tech
PRO
October 25, 2022
Technology
0
900
リアルIPのカード作成自動化への挑戦
GREE Tech Conference 2022で発表された資料です。
https://techcon.gree.jp/2022/session/TrackB-6
gree_tech
PRO
October 25, 2022
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
3.2k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
34
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.5k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
240
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
220
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.6k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
340
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
370
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
260
Other Decks in Technology
See All in Technology
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
210
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
110
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
170
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
AI駆動PjMの理想像 と現在地 -実践例を添えて-
masahiro_okamura
1
110
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
190
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
Featured
See All Featured
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
We Have a Design System, Now What?
morganepeng
54
8k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
770
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Making Projects Easy
brettharned
120
6.6k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
51
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
350
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Transcript
グリーエンターテインメント チーフクライアントエンジニア 立花 祐一郎 リアルIPのカード作成自動化への 挑戦
氏名 立花 祐一郎 所属 グリーエンターテインメント株式会社 担当 チーフクライアントエンジニア 経歴 モバイルゲーム会社から2019年にファンプレックス (現グリーエンターテインメント)に転籍。 以降、ゲーム運用フェーズにて
サーバー・クライアント開発、社外調整、管理業務と幅広く従事。 自己紹介 2
グリーエンターテインメントの紹介 3
目次 1. リアルIPって何? 2. カード作成自動化の経緯 3. カード作成自動化の取り組み 4. 残された課題 5.
まとめ 4
5 リアルIPって何?
リアルIPの定義 現実のアイドルやアーティストなどを扱った知的財産 6
リアルIPを用いたゲームの特徴 写真を加工してカード化などを行う 7
8 カード作成自動化の経緯
9 留意事項 • 本セッションのリアルIPのゲームですが、権利関係の都合でタイト ル公表NGとなっております。 • そのため、カード作成の自動化に使われた実際の写真や ゲーム 内のスクショは本セッションでは紹介できません。
カード作成自動化の経緯について 弊社のリアルIPゲームの作成したカード枚数... 年間 数百枚以上!! 10
作成カードの例 ゲーム内レアリティに沿ってカードの豪華さが変化する 11
自動化に適した条件 一番レアリティの低いNカードに関して 12 • 正面顔 • シンプルな背景 • 加工が控えめ
自動化に適した条件 全カードのうち6割がNカード 13 枚数 >
14 カード作成自動化の取り組み
自動化の大まかな流れ① 切り抜き 背景除去
自動化の大まかな流れ② 16 カード に適用 データ の読み 込み 山田太郎 カードの説明
顔の切り抜き 切り抜き 背景除去
顔の切り抜きルール • 目と鼻の位置を基準に切り取る 18
顔検出方法の選定 • 目と鼻の位置が検出可能 • APIを呼び出すだけで使える手軽なもの 19
選定時の候補 • OpenCV • カスケード分類器 • ディープラーニング • AWS Recognition
20
カスケード分類器 メリット • 情報が豊富 デメリット • 顔検知の精度は低い • パラメーターの調整が必要 21
ディープラーニング(YuNet) メリット • 高速かつ精度の高い顔検出ができる デメリット ・特になし 22
AWS Recognition メリット • 簡単かつ非常に精度が高い デメリット • 1枚当たり0.0013USDの費用が発生 • 外部APIの呼び出しなので通信が必要
23
24 カスケード 分類器 ディープラーニング(YuNet) AWS Recognition 精度 誤検知あり 良好 非常に良好
費用 無料 無料 0.0013USD/枚
顔検出手法の決定 精度の高いAWS Recognitionを採用 25 OpenCV AWS Recognition
AWS Recognitionの顔検出APIレスポンス 主要なレスポンス要素 • Bouding Box • 画像の赤枠 • Confidence
• 信頼値。検出した顔の正確性 • Landmarks • 画像の青丸 26
AWS Recognitionのつまづいた点 S3から落としてきた画像の向きが勝手に変わってしまう 27
EXIFメタデータ 写真で撮影した画像のメタデータ メタデータの例 • 写真の向き • カメラやスマホの種類 • 著作権 •
撮影地点 28
Exifの値を参照して向きを補正するサンプル Pythonのサンプルコード 29
Exifの値を参照して向きを補正するサンプル • 方向のメタデータの値は1~8 (例) • 1ならばそのまま • 2ならば反転 30
背景除去 切り抜き 背景除去
背景除去 1. Photoshopの「被写体を選択」 2. マスク適用 32
Photoshopの「被写体を選択」 • 1クリックで、人物の輪郭を選択する機能 • 以下に該当する場合は選択範囲が取れない可能性が高くなる • 被写体が複数 • 背景が複雑 33
「被写体を選択」をスクリプトから呼び出す Photoshopの「アクション」機能 • Photoshopの操作を録画・再生できる機能 • 馴染みのないPhotoshop処理も簡単に自動化できる 34
後の工程 Photoshopスクリプトで全て自動化 35 カード に適用 データ の読み 込み 山田太郎 カードの説明
結果 色調整を除けば、7~8割の精度でカードの自動生成が可能 36
残された課題 37
残された課題 色味の調整 ・照明などの影響を埋める調整が必要 38
まとめ • 7~8割の精度でカード自動生成が出来た • AWS Recognitionは、お手軽かつ精度高く顔検出サービス • Photoshopの機能にも自動化に使えるものがある • 色調整が今後の課題
39
40