Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
リアルIPのカード作成自動化への挑戦
Search
gree_tech
PRO
October 25, 2022
Technology
0
710
リアルIPのカード作成自動化への挑戦
GREE Tech Conference 2022で発表された資料です。
https://techcon.gree.jp/2022/session/TrackB-6
gree_tech
PRO
October 25, 2022
Tweet
Share
More Decks by gree_tech
See All by gree_tech
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
130
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
1.7k
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
580
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
590
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
560
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
640
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
1k
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
670
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
790
Other Decks in Technology
See All in Technology
shake-upを科学する
rsakata
7
1k
Copilot coding agentにベットしたいCTOが開発組織で取り組んだこと / GitHub Copilot coding agent in Team
tnir
0
190
本当にわかりやすいAIエージェント入門
segavvy
1
340
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
240
CDKコード品質UP!ナイスな自作コンストラクタを作るための便利インターフェース
harukasakihara
2
230
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
18k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
820
Figma Dev Mode MCP Serverを用いたUI開発
zoothezoo
0
230
ClaudeCodeにキレない技術
gtnao
1
860
〜『世界中の家族のこころのインフラ』を目指して”次の10年”へ〜 SREが導いたグローバルサービスの信頼性向上戦略とその舞台裏 / Towards the Next Decade: Enhancing Global Service Reliability
kohbis
3
1.5k
AI エージェントと考え直すデータ基盤
na0
20
7.9k
Digitization部 紹介資料
sansan33
PRO
1
4.5k
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
750
KATA
mclloyd
30
14k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
The Cult of Friendly URLs
andyhume
79
6.5k
BBQ
matthewcrist
89
9.7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Designing for Performance
lara
610
69k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Being A Developer After 40
akosma
90
590k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
For a Future-Friendly Web
brad_frost
179
9.8k
Transcript
グリーエンターテインメント チーフクライアントエンジニア 立花 祐一郎 リアルIPのカード作成自動化への 挑戦
氏名 立花 祐一郎 所属 グリーエンターテインメント株式会社 担当 チーフクライアントエンジニア 経歴 モバイルゲーム会社から2019年にファンプレックス (現グリーエンターテインメント)に転籍。 以降、ゲーム運用フェーズにて
サーバー・クライアント開発、社外調整、管理業務と幅広く従事。 自己紹介 2
グリーエンターテインメントの紹介 3
目次 1. リアルIPって何? 2. カード作成自動化の経緯 3. カード作成自動化の取り組み 4. 残された課題 5.
まとめ 4
5 リアルIPって何?
リアルIPの定義 現実のアイドルやアーティストなどを扱った知的財産 6
リアルIPを用いたゲームの特徴 写真を加工してカード化などを行う 7
8 カード作成自動化の経緯
9 留意事項 • 本セッションのリアルIPのゲームですが、権利関係の都合でタイト ル公表NGとなっております。 • そのため、カード作成の自動化に使われた実際の写真や ゲーム 内のスクショは本セッションでは紹介できません。
カード作成自動化の経緯について 弊社のリアルIPゲームの作成したカード枚数... 年間 数百枚以上!! 10
作成カードの例 ゲーム内レアリティに沿ってカードの豪華さが変化する 11
自動化に適した条件 一番レアリティの低いNカードに関して 12 • 正面顔 • シンプルな背景 • 加工が控えめ
自動化に適した条件 全カードのうち6割がNカード 13 枚数 >
14 カード作成自動化の取り組み
自動化の大まかな流れ① 切り抜き 背景除去
自動化の大まかな流れ② 16 カード に適用 データ の読み 込み 山田太郎 カードの説明
顔の切り抜き 切り抜き 背景除去
顔の切り抜きルール • 目と鼻の位置を基準に切り取る 18
顔検出方法の選定 • 目と鼻の位置が検出可能 • APIを呼び出すだけで使える手軽なもの 19
選定時の候補 • OpenCV • カスケード分類器 • ディープラーニング • AWS Recognition
20
カスケード分類器 メリット • 情報が豊富 デメリット • 顔検知の精度は低い • パラメーターの調整が必要 21
ディープラーニング(YuNet) メリット • 高速かつ精度の高い顔検出ができる デメリット ・特になし 22
AWS Recognition メリット • 簡単かつ非常に精度が高い デメリット • 1枚当たり0.0013USDの費用が発生 • 外部APIの呼び出しなので通信が必要
23
24 カスケード 分類器 ディープラーニング(YuNet) AWS Recognition 精度 誤検知あり 良好 非常に良好
費用 無料 無料 0.0013USD/枚
顔検出手法の決定 精度の高いAWS Recognitionを採用 25 OpenCV AWS Recognition
AWS Recognitionの顔検出APIレスポンス 主要なレスポンス要素 • Bouding Box • 画像の赤枠 • Confidence
• 信頼値。検出した顔の正確性 • Landmarks • 画像の青丸 26
AWS Recognitionのつまづいた点 S3から落としてきた画像の向きが勝手に変わってしまう 27
EXIFメタデータ 写真で撮影した画像のメタデータ メタデータの例 • 写真の向き • カメラやスマホの種類 • 著作権 •
撮影地点 28
Exifの値を参照して向きを補正するサンプル Pythonのサンプルコード 29
Exifの値を参照して向きを補正するサンプル • 方向のメタデータの値は1~8 (例) • 1ならばそのまま • 2ならば反転 30
背景除去 切り抜き 背景除去
背景除去 1. Photoshopの「被写体を選択」 2. マスク適用 32
Photoshopの「被写体を選択」 • 1クリックで、人物の輪郭を選択する機能 • 以下に該当する場合は選択範囲が取れない可能性が高くなる • 被写体が複数 • 背景が複雑 33
「被写体を選択」をスクリプトから呼び出す Photoshopの「アクション」機能 • Photoshopの操作を録画・再生できる機能 • 馴染みのないPhotoshop処理も簡単に自動化できる 34
後の工程 Photoshopスクリプトで全て自動化 35 カード に適用 データ の読み 込み 山田太郎 カードの説明
結果 色調整を除けば、7~8割の精度でカードの自動生成が可能 36
残された課題 37
残された課題 色味の調整 ・照明などの影響を埋める調整が必要 38
まとめ • 7~8割の精度でカード自動生成が出来た • AWS Recognitionは、お手軽かつ精度高く顔検出サービス • Photoshopの機能にも自動化に使えるものがある • 色調整が今後の課題
39
40