Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
目指すは自分専用アシスタント!?~社内向けAIチャットボットの開発とその展望~
Search
gree_tech
PRO
October 13, 2023
Technology
0
1.4k
目指すは自分専用アシスタント!?~社内向けAIチャットボットの開発とその展望~
GREE Tech Conference 2023で発表された資料です。
https://techcon.gree.jp/2023/session/TrackA-4
gree_tech
PRO
October 13, 2023
Tweet
Share
More Decks by gree_tech
See All by gree_tech
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
130
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
1.7k
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
580
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
590
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
560
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
640
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
1k
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
670
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
790
Other Decks in Technology
See All in Technology
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.7k
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
410
ポストコロナ時代の SaaS におけるコスト削減の意義
izzii
1
470
〜『世界中の家族のこころのインフラ』を目指して”次の10年”へ〜 SREが導いたグローバルサービスの信頼性向上戦略とその舞台裏 / Towards the Next Decade: Enhancing Global Service Reliability
kohbis
3
1.5k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
18k
推し書籍📚 / Books and a QA Engineer
ak1210
0
140
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
110
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
2
230
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
39k
Rethinking Incident Response: Context-Aware AI in Practice
rrreeeyyy
2
940
CDK Vibe Coding Fes
tomoki10
1
630
Copilot coding agentにベットしたいCTOが開発組織で取り組んだこと / GitHub Copilot coding agent in Team
tnir
0
190
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Statistics for Hackers
jakevdp
799
220k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Building Adaptive Systems
keathley
43
2.7k
Adopting Sorbet at Scale
ufuk
77
9.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Docker and Python
trallard
45
3.5k
Transcript
目指すは自分専用アシスタント!? ~社内向けAIチャットボットの開発と その展望~ グリー株式会社 開発本部 情報システム部 エンジニア 萩原 勝
自己紹介 • 名前 ◦ 萩原 勝(はぎわら まさる) • 略歴 ◦
ソフトウェアエンジニア →SE→社内SEを経て、 2023年4月グリー株式会社入社。 • 所属 ◦ グリー株式会社 開発本部 / 情報システム部 / ITマネジメントグループ ITサービスオペレーションチーム • 業務内容 ◦ 社内ITシステムの企画・運用 2
グリーの社内ツール 3 Slack Zoom Confluence クラウドストレージ 電子署名 業務システム Adobe Sign
ワークフロー ServiceNow サービスデスク JIRA Slack データ共有 Google Drive Box ファイルサーバ Cohesity 問い合わせ ナレッジ共有 Wiki Portal Sharepoint Online 横断検索 Google Cloud Search コミュニケーション ビジネスチャット Web会議 コラボレーション 開発基盤 アプリケーション開発 Google Cloud データ連携 Workato Google Workspace 設備-ネットワーク 設備-オフィス Azure Active Directory Client VPN Global Protect 無人受付システム RECEPTIONIST ビジネスフォン INNOVERA レポート Looker Studio VDI Amazon Workspaces SSO Google Sites ビデオ会議システム DTEN, Neat Bar
本日の内容 • 生成AIを取り巻く状況 • 情シスにおける生成AIへの取り組み ◦ Azure OpenAIの利用検討 ◦ 自社データに答えてくれる
AIチャットボットを目指すに至った経緯 ◦ 技術的な実装例 ◦ 現状のサンプル • 今後の展望について 4
生成AIを取り巻く状況 昨年11月にChatGPTがリリースされて以降、各社生成 AIを用いたサービスを次々にリリース。 • OpenAI社:ChatGPT(Enterprise含) • Microsoft社 ◦ Bing Chat(Enterprise含)
◦ Microsoft 365 Copilot ◦ Azure OpenAI Service • Google社 ◦ Bard ◦ Duet AI ◦ Google Cloud Vertex AI(PaLM2) • その他ツール ◦ Atlassian(Jira,Confluence) : Atlassian Intelligence ◦ Slack :Slack AI ◦ etc.. 5
生成AIを取り巻く状況 6 • ChatGPT • Bing Chat • Bard コンシューマー向け
ビジネスユース向け • ChatGPT Enterprise • Azure OpenAI Service • Google Cloud Vertex AI(PaLM2) 開発型 • Bing Chat Enterprise • Microsoft 365 Copilot • Duet AI • Atlassian Intelligence • Slack AI ツールネイティブ型
生成AIを取り巻く状況 7 • ChatGPT • Bing Chat • Bard コンシューマー向け
ビジネスユース向け • ChatGPT Enterprise • Azure OpenAI Service • Google Cloud Vertex AI(PaLM2) 開発型 • Bing Chat Enterprise • Microsoft 365 Copilot • Duet AI • Atlassian Intelligence • Slack AI ツールネイティブ型
情シスにおける生成AIへの取り組み 8
Azure OpenAI Serviceの活用検証 • 認証基盤として利用していて導入が容易 • セキュリティ/ガバナンスの制御 a. ログ b.
認証 c. NW • 責任あるAIへの対応 a. コンテンツフィルタリング b. プライバシー 9
Azure OpenAIとは • Azureの1サービス • OpenAI社とパートナーシップを結んでいるため、ChatGPTで使われているGPTモ デルを利用できる • Azureの各種サービスと組み合わせることで、エンタープライズ要件に対応したAI 環境を構築可能
10
どう活用するか 当初(5月くらい)の検討 11 • 自社専用のChatGPTクローンな環境 →あまり使ってもらえなそう。。 • Slackなどの社内ツールから生成 AIを使える ようにする
→そのうち機能として搭載されそう。
自社データに答えてくれるAIチャットボット 生成AIは特定時点までのwebに公開された情報にしか答えてくれない。 12 自社が保有している情報に対しても回答してくれることに価値。 社内の煩雑な社内手続きを読み取って、答えてくれるAIチャットボット
生成AIに自社データを回答させる手法 • Fine-tuning 既に学習済みの生成AIのモデル(GPT)を、トレーニングデータと呼ばれるデータセットを使って、再 学習させる方法。 →トレーニングデータの作成や、再学習後のモデルの調整、実行にかかるコスト等、まだカジュアル にできるものではない印象。 • Retrieval Augmented
Generation(RAG) 回答に必要な、言語モデルが知りえない情報を外部のデータソースから取得し、回 答を生成する手法。 →データソースの準備など、事前に必要な作業はあるが、Fine-tuningよりは比較 的取り組みやすい状況。 13
オーケストレー ション (バックエンド) RAGのアーキテクチャ 14 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF)
オーケストレー ション (バックエンド) RAGのアーキテクチャ 15 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム
オーケストレー ション (バックエンド) RAGのアーキテクチャ 16 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム 非機能系の実装 ・ログ管理、認証、NW制限、コスト管理、アクセス権 ・運用方法
Azure OpenAI on your dataの登場 • 先ほどのRAGのアーキテクチャを、画面数回のクリックで構築できるAzure OpenAIの機能 17
オーケストレー ション (バックエンド) RAGのアーキテクチャ 18 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム 非機能系の実装 ・ログ管理、認証、NW制限、コスト管理、アクセス権 ・運用方法
Azure OpenAI Service リファレンスアーキテクチャ • エンタープライズにおける活用シナリオを想定した参考アーキテクチャ • IaCのコードで構築 19
Azure OpenAI Service リファレンスアーキテクチャ 20
まとめと今後の展望について • エンタープライズ用途に耐えうる自社データに答えるAIチャットボットが比較的カ ジュアルに構築できる環境が整ってきている。 • 現状MS系のデータソースや特定のファイル拡張子にしか対応していないのが課 題。 →最近Google社のPaLM 2が日本語対応したので、そちらも含めてグリーにとっ て最適な導入形態を検討していきます。
• 将来的な構想として、社内のことに答えてくれるのはもちろん、棚卸などの煩雑な 社内業務も依頼すればやってくれる、自分専用のアシスタントが一人一人について くれるようなものを提供したいと思っています。 21
22