Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
目指すは自分専用アシスタント!?~社内向けAIチャットボットの開発とその展望~
Search
gree_tech
PRO
October 13, 2023
Technology
0
1.7k
目指すは自分専用アシスタント!?~社内向けAIチャットボットの開発とその展望~
GREE Tech Conference 2023で発表された資料です。
https://techcon.gree.jp/2023/session/TrackA-4
gree_tech
PRO
October 13, 2023
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
3.2k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
33
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.5k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
230
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
220
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.6k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
340
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
360
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
250
Other Decks in Technology
See All in Technology
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Webhook best practices for rock solid and resilient deployments
glaforge
1
280
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
330
AI駆動PjMの理想像 と現在地 -実践例を添えて-
masahiro_okamura
1
110
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
120
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
240
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
400
今日から始めるAmazon Bedrock AgentCore
har1101
4
400
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
230
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
160
Featured
See All Featured
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
700
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Typedesign – Prime Four
hannesfritz
42
2.9k
Mobile First: as difficult as doing things right
swwweet
225
10k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Building Applications with DynamoDB
mza
96
6.9k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Transcript
目指すは自分専用アシスタント!? ~社内向けAIチャットボットの開発と その展望~ グリー株式会社 開発本部 情報システム部 エンジニア 萩原 勝
自己紹介 • 名前 ◦ 萩原 勝(はぎわら まさる) • 略歴 ◦
ソフトウェアエンジニア →SE→社内SEを経て、 2023年4月グリー株式会社入社。 • 所属 ◦ グリー株式会社 開発本部 / 情報システム部 / ITマネジメントグループ ITサービスオペレーションチーム • 業務内容 ◦ 社内ITシステムの企画・運用 2
グリーの社内ツール 3 Slack Zoom Confluence クラウドストレージ 電子署名 業務システム Adobe Sign
ワークフロー ServiceNow サービスデスク JIRA Slack データ共有 Google Drive Box ファイルサーバ Cohesity 問い合わせ ナレッジ共有 Wiki Portal Sharepoint Online 横断検索 Google Cloud Search コミュニケーション ビジネスチャット Web会議 コラボレーション 開発基盤 アプリケーション開発 Google Cloud データ連携 Workato Google Workspace 設備-ネットワーク 設備-オフィス Azure Active Directory Client VPN Global Protect 無人受付システム RECEPTIONIST ビジネスフォン INNOVERA レポート Looker Studio VDI Amazon Workspaces SSO Google Sites ビデオ会議システム DTEN, Neat Bar
本日の内容 • 生成AIを取り巻く状況 • 情シスにおける生成AIへの取り組み ◦ Azure OpenAIの利用検討 ◦ 自社データに答えてくれる
AIチャットボットを目指すに至った経緯 ◦ 技術的な実装例 ◦ 現状のサンプル • 今後の展望について 4
生成AIを取り巻く状況 昨年11月にChatGPTがリリースされて以降、各社生成 AIを用いたサービスを次々にリリース。 • OpenAI社:ChatGPT(Enterprise含) • Microsoft社 ◦ Bing Chat(Enterprise含)
◦ Microsoft 365 Copilot ◦ Azure OpenAI Service • Google社 ◦ Bard ◦ Duet AI ◦ Google Cloud Vertex AI(PaLM2) • その他ツール ◦ Atlassian(Jira,Confluence) : Atlassian Intelligence ◦ Slack :Slack AI ◦ etc.. 5
生成AIを取り巻く状況 6 • ChatGPT • Bing Chat • Bard コンシューマー向け
ビジネスユース向け • ChatGPT Enterprise • Azure OpenAI Service • Google Cloud Vertex AI(PaLM2) 開発型 • Bing Chat Enterprise • Microsoft 365 Copilot • Duet AI • Atlassian Intelligence • Slack AI ツールネイティブ型
生成AIを取り巻く状況 7 • ChatGPT • Bing Chat • Bard コンシューマー向け
ビジネスユース向け • ChatGPT Enterprise • Azure OpenAI Service • Google Cloud Vertex AI(PaLM2) 開発型 • Bing Chat Enterprise • Microsoft 365 Copilot • Duet AI • Atlassian Intelligence • Slack AI ツールネイティブ型
情シスにおける生成AIへの取り組み 8
Azure OpenAI Serviceの活用検証 • 認証基盤として利用していて導入が容易 • セキュリティ/ガバナンスの制御 a. ログ b.
認証 c. NW • 責任あるAIへの対応 a. コンテンツフィルタリング b. プライバシー 9
Azure OpenAIとは • Azureの1サービス • OpenAI社とパートナーシップを結んでいるため、ChatGPTで使われているGPTモ デルを利用できる • Azureの各種サービスと組み合わせることで、エンタープライズ要件に対応したAI 環境を構築可能
10
どう活用するか 当初(5月くらい)の検討 11 • 自社専用のChatGPTクローンな環境 →あまり使ってもらえなそう。。 • Slackなどの社内ツールから生成 AIを使える ようにする
→そのうち機能として搭載されそう。
自社データに答えてくれるAIチャットボット 生成AIは特定時点までのwebに公開された情報にしか答えてくれない。 12 自社が保有している情報に対しても回答してくれることに価値。 社内の煩雑な社内手続きを読み取って、答えてくれるAIチャットボット
生成AIに自社データを回答させる手法 • Fine-tuning 既に学習済みの生成AIのモデル(GPT)を、トレーニングデータと呼ばれるデータセットを使って、再 学習させる方法。 →トレーニングデータの作成や、再学習後のモデルの調整、実行にかかるコスト等、まだカジュアル にできるものではない印象。 • Retrieval Augmented
Generation(RAG) 回答に必要な、言語モデルが知りえない情報を外部のデータソースから取得し、回 答を生成する手法。 →データソースの準備など、事前に必要な作業はあるが、Fine-tuningよりは比較 的取り組みやすい状況。 13
オーケストレー ション (バックエンド) RAGのアーキテクチャ 14 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF)
オーケストレー ション (バックエンド) RAGのアーキテクチャ 15 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム
オーケストレー ション (バックエンド) RAGのアーキテクチャ 16 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム 非機能系の実装 ・ログ管理、認証、NW制限、コスト管理、アクセス権 ・運用方法
Azure OpenAI on your dataの登場 • 先ほどのRAGのアーキテクチャを、画面数回のクリックで構築できるAzure OpenAIの機能 17
オーケストレー ション (バックエンド) RAGのアーキテクチャ 18 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム 非機能系の実装 ・ログ管理、認証、NW制限、コスト管理、アクセス権 ・運用方法
Azure OpenAI Service リファレンスアーキテクチャ • エンタープライズにおける活用シナリオを想定した参考アーキテクチャ • IaCのコードで構築 19
Azure OpenAI Service リファレンスアーキテクチャ 20
まとめと今後の展望について • エンタープライズ用途に耐えうる自社データに答えるAIチャットボットが比較的カ ジュアルに構築できる環境が整ってきている。 • 現状MS系のデータソースや特定のファイル拡張子にしか対応していないのが課 題。 →最近Google社のPaLM 2が日本語対応したので、そちらも含めてグリーにとっ て最適な導入形態を検討していきます。
• 将来的な構想として、社内のことに答えてくれるのはもちろん、棚卸などの煩雑な 社内業務も依頼すればやってくれる、自分専用のアシスタントが一人一人について くれるようなものを提供したいと思っています。 21
22