Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
目指すは自分専用アシスタント!?~社内向けAIチャットボットの開発とその展望~
Search
gree_tech
PRO
October 13, 2023
Technology
0
1.4k
目指すは自分専用アシスタント!?~社内向けAIチャットボットの開発とその展望~
GREE Tech Conference 2023で発表された資料です。
https://techcon.gree.jp/2023/session/TrackA-4
gree_tech
PRO
October 13, 2023
Tweet
Share
More Decks by gree_tech
See All by gree_tech
コミュニケーションに鍵を見いだす、エンジニア1年目の経験談
gree_tech
PRO
0
140
REALITY株式会社における開発生産性向上の取り組み: 失敗と成功から学んだこと
gree_tech
PRO
2
1.8k
『ヘブンバーンズレッド』におけるフィールドギミックの裏側
gree_tech
PRO
2
630
セキュリティインシデント対応の体制・運用の試行錯誤 / greetechcon2024-session-a1
gree_tech
PRO
1
640
『アナザーエデン 時空を超える猫』国内海外同時運営実現への道のり ~別々で開発されたアプリを安定して同時リリースするまでの取り組み~
gree_tech
PRO
1
600
『アサルトリリィ Last Bullet』におけるクラウドストリーミング技術を用いたブラウザゲーム化の紹介
gree_tech
PRO
1
700
UnityによるPCアプリの新しい選択肢。「PC版 Google Play Games」への対応について
gree_tech
PRO
1
1.1k
実機ビルドのエラーによる検証ブロッカーを0に!『ヘブンバーンズレッド』のスモークテスト自動化の取り組み
gree_tech
PRO
1
710
"ゲームQA業界の技術向上を目指す! 会社を超えた研究会の取り組み"
gree_tech
PRO
1
860
Other Decks in Technology
See All in Technology
開発 × 生成AI × コミュニケーション:GENDAの開発現場で感じたコミュニケーションの変化 / GENDA Tech Talk #1
genda
0
260
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
850
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
200
LLMをツールからプラットフォームへ〜Ai Workforceの戦略〜 #BetAIDay
layerx
PRO
1
1k
PL/pgSQLの基本と使い所
tameguro
2
220
20250807 Applied Engineer Open House
sakana_ai
PRO
2
460
Amazon Bedrock AgentCoreのフロントエンドを探す旅 (Next.js編)
kmiya84377
1
150
工業高校で学習したとあるエンジニアのキャリアの話
shirayanagiryuji
0
110
2時間で300+テーブルをデータ基盤に連携するためのAI活用 / FukuokaDataEngineer
sansan_randd
0
160
形式手法特論:位相空間としての並行プログラミング #kernelvm / Kernel VM Study Tokyo 18th
ytaka23
3
1.4k
Telemetry APIから学ぶGoogle Cloud ObservabilityとOpenTelemetryの現在 / getting-started-telemetry-api-with-google-cloud
k6s4i53rx
0
150
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
2
500
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.3k
Navigating Team Friction
lara
188
15k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Visualization
eitanlees
146
16k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
A better future with KSS
kneath
239
17k
Transcript
目指すは自分専用アシスタント!? ~社内向けAIチャットボットの開発と その展望~ グリー株式会社 開発本部 情報システム部 エンジニア 萩原 勝
自己紹介 • 名前 ◦ 萩原 勝(はぎわら まさる) • 略歴 ◦
ソフトウェアエンジニア →SE→社内SEを経て、 2023年4月グリー株式会社入社。 • 所属 ◦ グリー株式会社 開発本部 / 情報システム部 / ITマネジメントグループ ITサービスオペレーションチーム • 業務内容 ◦ 社内ITシステムの企画・運用 2
グリーの社内ツール 3 Slack Zoom Confluence クラウドストレージ 電子署名 業務システム Adobe Sign
ワークフロー ServiceNow サービスデスク JIRA Slack データ共有 Google Drive Box ファイルサーバ Cohesity 問い合わせ ナレッジ共有 Wiki Portal Sharepoint Online 横断検索 Google Cloud Search コミュニケーション ビジネスチャット Web会議 コラボレーション 開発基盤 アプリケーション開発 Google Cloud データ連携 Workato Google Workspace 設備-ネットワーク 設備-オフィス Azure Active Directory Client VPN Global Protect 無人受付システム RECEPTIONIST ビジネスフォン INNOVERA レポート Looker Studio VDI Amazon Workspaces SSO Google Sites ビデオ会議システム DTEN, Neat Bar
本日の内容 • 生成AIを取り巻く状況 • 情シスにおける生成AIへの取り組み ◦ Azure OpenAIの利用検討 ◦ 自社データに答えてくれる
AIチャットボットを目指すに至った経緯 ◦ 技術的な実装例 ◦ 現状のサンプル • 今後の展望について 4
生成AIを取り巻く状況 昨年11月にChatGPTがリリースされて以降、各社生成 AIを用いたサービスを次々にリリース。 • OpenAI社:ChatGPT(Enterprise含) • Microsoft社 ◦ Bing Chat(Enterprise含)
◦ Microsoft 365 Copilot ◦ Azure OpenAI Service • Google社 ◦ Bard ◦ Duet AI ◦ Google Cloud Vertex AI(PaLM2) • その他ツール ◦ Atlassian(Jira,Confluence) : Atlassian Intelligence ◦ Slack :Slack AI ◦ etc.. 5
生成AIを取り巻く状況 6 • ChatGPT • Bing Chat • Bard コンシューマー向け
ビジネスユース向け • ChatGPT Enterprise • Azure OpenAI Service • Google Cloud Vertex AI(PaLM2) 開発型 • Bing Chat Enterprise • Microsoft 365 Copilot • Duet AI • Atlassian Intelligence • Slack AI ツールネイティブ型
生成AIを取り巻く状況 7 • ChatGPT • Bing Chat • Bard コンシューマー向け
ビジネスユース向け • ChatGPT Enterprise • Azure OpenAI Service • Google Cloud Vertex AI(PaLM2) 開発型 • Bing Chat Enterprise • Microsoft 365 Copilot • Duet AI • Atlassian Intelligence • Slack AI ツールネイティブ型
情シスにおける生成AIへの取り組み 8
Azure OpenAI Serviceの活用検証 • 認証基盤として利用していて導入が容易 • セキュリティ/ガバナンスの制御 a. ログ b.
認証 c. NW • 責任あるAIへの対応 a. コンテンツフィルタリング b. プライバシー 9
Azure OpenAIとは • Azureの1サービス • OpenAI社とパートナーシップを結んでいるため、ChatGPTで使われているGPTモ デルを利用できる • Azureの各種サービスと組み合わせることで、エンタープライズ要件に対応したAI 環境を構築可能
10
どう活用するか 当初(5月くらい)の検討 11 • 自社専用のChatGPTクローンな環境 →あまり使ってもらえなそう。。 • Slackなどの社内ツールから生成 AIを使える ようにする
→そのうち機能として搭載されそう。
自社データに答えてくれるAIチャットボット 生成AIは特定時点までのwebに公開された情報にしか答えてくれない。 12 自社が保有している情報に対しても回答してくれることに価値。 社内の煩雑な社内手続きを読み取って、答えてくれるAIチャットボット
生成AIに自社データを回答させる手法 • Fine-tuning 既に学習済みの生成AIのモデル(GPT)を、トレーニングデータと呼ばれるデータセットを使って、再 学習させる方法。 →トレーニングデータの作成や、再学習後のモデルの調整、実行にかかるコスト等、まだカジュアル にできるものではない印象。 • Retrieval Augmented
Generation(RAG) 回答に必要な、言語モデルが知りえない情報を外部のデータソースから取得し、回 答を生成する手法。 →データソースの準備など、事前に必要な作業はあるが、Fine-tuningよりは比較 的取り組みやすい状況。 13
オーケストレー ション (バックエンド) RAGのアーキテクチャ 14 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF)
オーケストレー ション (バックエンド) RAGのアーキテクチャ 15 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム
オーケストレー ション (バックエンド) RAGのアーキテクチャ 16 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム 非機能系の実装 ・ログ管理、認証、NW制限、コスト管理、アクセス権 ・運用方法
Azure OpenAI on your dataの登場 • 先ほどのRAGのアーキテクチャを、画面数回のクリックで構築できるAzure OpenAIの機能 17
オーケストレー ション (バックエンド) RAGのアーキテクチャ 18 生成AI (API) フロントAPP ①入力 例)
PCやモニタを会社に発送したい ⑤回答を返す ユーザー DB ・ ・ ・ 社 内 の ド キ ュ メ ン ト ②検索クエリに分解 ③検索→結果取得 ④検索結果+当初の質問文 をもとに回答を作成 ⓪事前準備 社内の情報をインデックス という形式で格納 (PDF) Azure OpenAI Service Cognitive Search プログラム App Service プログラム 非機能系の実装 ・ログ管理、認証、NW制限、コスト管理、アクセス権 ・運用方法
Azure OpenAI Service リファレンスアーキテクチャ • エンタープライズにおける活用シナリオを想定した参考アーキテクチャ • IaCのコードで構築 19
Azure OpenAI Service リファレンスアーキテクチャ 20
まとめと今後の展望について • エンタープライズ用途に耐えうる自社データに答えるAIチャットボットが比較的カ ジュアルに構築できる環境が整ってきている。 • 現状MS系のデータソースや特定のファイル拡張子にしか対応していないのが課 題。 →最近Google社のPaLM 2が日本語対応したので、そちらも含めてグリーにとっ て最適な導入形態を検討していきます。
• 将来的な構想として、社内のことに答えてくれるのはもちろん、棚卸などの煩雑な 社内業務も依頼すればやってくれる、自分専用のアシスタントが一人一人について くれるようなものを提供したいと思っています。 21
22