Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Energy-efficient data centers: Exploiting knowledge about application and resources

GreenLSI
February 03, 2014

Energy-efficient data centers: Exploiting knowledge about application and resources

Presentation by Jose M. Moya at the IEEE Region 8 SB & GOLD Congress (25 – 29 July, 2012).

The current techniques for data center energy optimization, based on
efficiency metrics like PUE, pPUE, ERE, DCcE, etc., do not take into
account the static and dynamic characteristics of the applications and
resources (computing and cooling). However, the knowledge about the
current state of the data center, the past history, the resource
characteristics, and the characteristics of the jobs to be executed
can be used very effectively to guide decision-making at all levels in
the datacenter in order to minimize energy needs. For example, the
allocation of jobs on the available machines, if done taking into
account the most appropriate architecture for each job from the
energetic point of view, and taking into account the type of jobs that
will come later, can reduce energy needs by 30%.

Moreover, to achieve significant reductions in energy consumption of
state-of-the-art data centers (low PUE) is becoming increasingly
important a comprehensive and multi-level approach, ie, acting on
different abstraction levels (scheduling and resource allocation,
application, operating system, compilers and virtual machines,
architecture, and technology), and at different scopes (chip, server,
rack, room, and multi-room).

GreenLSI

February 03, 2014
Tweet

More Decks by GreenLSI

Other Decks in Research

Transcript

  1. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Energy-efficient data centers:
    Exploiting knowledge about
    application and resources
    José  M.  Moya    
    Integrated  Systems  Laboratory  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   1  

    View Slide

  2. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Data centers
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   2  

    View Slide

  3. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   3  

    View Slide

  4. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Power distribution
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   4  

    View Slide

  5. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Power distribution (Tier 4)
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   5  

    View Slide

  6. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Contents
    •  MoHvaHon  
    •  Our  approach  
    –  Scheduling  and  resource  
    management  
    –  Virtual  machine  
    opHmizaHons  
    –  Centralized  management  
    of  low-­‐power  modes  
    –  Processor  design  
    •  Conclusions  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   6  

    View Slide

  7. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Motivation
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   7  
    •  Energy  consumpHon  of  data  centers  
    –  1.3%  of  worldwide  energy  producHon  in  2010  
    –  USA:  80  mill  MWh/year  in  2011  =  1,5  x  NYC  
    –  1  data  center  =  25  000  houses  
    •  More  than  43  Million  Tons  of  CO2
     emissions  per  
    year  (2%  worldwide)  
    •  More  water  consumpHon  than  many  industries  
    (paper,  automoHve,  petrol,  wood,  or  plasHc)  
                       Jonathan  Koomey.  2011.  Growth  in  Data  center  electricity  use  2005  to  2010  

    View Slide

  8. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Motivation
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   8  
    •  It  is  expected  for  total  data  
    center  electricity  use  to  
    exceed  400  GWh/year  by  
    2015.  
    •  The  required  energy  for  
    cooling  will  conHnue  to  be  at  
    least  as  important  as  the  
    energy  required  for  the  
    computaHon.  
    •  Energy  opHmizaHon  of  future  
    data  centers  will  require  a  
    global  and  mulH-­‐disciplinary  
    approach.  
    0  
    5000  
    10000  
    15000  
    20000  
    25000  
    30000  
    35000  
    2000   2005   2010  
    World  server  installed  base  
    (thousands)  
    High-­‐end  servers  
    Mid-­‐range  servers  
    Volume  servers  
    0  
    50  
    100  
    150  
    200  
    250  
    300  
    2000   2005   2010  
    Electricity  use    
    (billion  kWh/year)  
    Infrastructure  
    CommunicaHons  
    Storage  
    High-­‐end  servers  
    Mid-­‐range  servers  
    Volume  servers  
    5,75  Million  new  servers  per  year  
    10%  unused  servers  (CO2
     emissions  
    similar  to  6,5  million  cars)  

    View Slide

  9. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Temperature-dependent
    reliability problems
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   9  
    Time-­‐dependent  
    dielectric-­‐
    breakdown  (TDDB)  
    ElectromigraHon  (EM)  
    Stress  
    migraHon  (SM)  
    Thermal  
    cycling  (TC)  
    ✔  
    ✖  
    ✖  
    ✖  

    View Slide

  10. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Cooling a data center
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   10  

    View Slide

  11. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    •  VirtualizaHon  
     
     
    -­‐  27%  
    •  Energy  Star  server  
    conformance  
     
     
    =  6.500  
    •  Bejer  capacity  
    planning  
     
    2.500  
    Server improvements
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   11  
    . . . . . . . . . . . . . . . . . . . . . . . . . . .
    Servidores
    5,75 millones de nuevos servido-
    res se instalan cada año para
    mantenerse al ritmo de creci-
    miento de los servicios on-line, y
    todavía aproximadamente el 10%
    de los servidores instalados no
    se utilizan debido a sobrestima-
    ciones conservadoras a la hora
    de planificar las necesidades de
    almacenamiento.
    La energía utilizada para
    los servidores en desuso
    podría compensar
    las emisiones de 6,5
    millones de coches.
    de los servidores.
    En un centro de datos convencional, algunas de
    estas mejoras pueden reducir su impacto en las
    siguientes cifras:
    (excluyendo el software)
    $ $ $ $
    A menudo los servidores se sobredimensionan
    para afrontar picos de demanda, lo que significa
    que como media suelen funcionar sólo al 20%
    2.500
    6,5 millones
    = 6.500
    El equivalente a retirar 6.500
    coches de las carreteras, me-
    diante la utilización de servidores
    acordes a Energy Star, lo que re-
    duciría el consumo eléctrico de
    los centros de datos en 82.000
    megavatios-hora.
    10% no se utilizan
    US
    27% Reducir un 27% el consumo
    energético mediante la virtuali-
    zación, lo que reduce la capaci-
    dad productiva no empleada.
    El equivalente a la energía consumida por 2.500
    hogares en EEUU, mediante una mejor planifica-
    ción de la capacidad.

    View Slide

  12. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Cooling improvements
    •  Improvements  in  air  flow  management  and  
    wider  temperature  ranges  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   12  
    Energy  savings  
    up  to  25%  
    25.000  
    Return  of  investment  
    in  only  2  years  
     

    View Slide

  13. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    AC  è  DC  
    – 20%  reducHon  of  power  losses  in  the  
    conversion  process  
    – 47  million  dollars  savings  of  real-­‐state  costs  
    – Up  to  97%  efficiency,  energy  saving  enough  to  
    power  an  iPad  during  
    70  
    million  years  
    Infrastructure improvements
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   13  

    View Slide

  14. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE







    Best practices
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   14  

    View Slide

  15. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    And…
    what about IT people?
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   15  

    View Slide

  16. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    PUE
    Power Usage Effectiveness
    •  State  of  the  Art:    PUE  ≈  1,2  
    –  The  important  part  is  IT  energy  consumpHon  
    –  Current  work  in  energy  efficient  data  centers  is  
    focused  in  decreasing  PUE  
    –  Decreasing  PIT    
    does  not  decrease  PUE,  but  it  is  seen  in  
    the  electricity  bill  
    •   But  how  can  we  reduce  PIT  
    ?  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   16  
    !"# =
    1
    !"#$
    =
    !!"!#$
    !!"
    =!
    !
    !!!!!!!!!!=
    !!"#$%
    + !!""#$%&
    + !!"#
    !!"#$%

    !!""#$%&
    + !!"
    !!"
    !

    View Slide

  17. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Potential energy savings
    by abstraction level
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   17  

    View Slide

  18. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Our approach
    •  Global  strategy  to  allow  the  use  of  mulHple  
    informaHon  sources  to  coordinate  decisions  in  order  
    to  reduce  the  total  energy  consumpHon  
    •  Use  of  knowledge  about  the  energy  demand  
    characterisHcs  of  the  applicaEons,  and    
    characterisHcs  of  compuEng  and  cooling  resources  
    to  implement  proacEve  opEmizaEon  techniques  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   18  

    View Slide

  19. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Holistic approach
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   19  
    Chip   Server   Rack   Room   MulE-­‐
    room  
    Sched  &  alloc   2   1  
    app  
    OS/middleware  
    Compiler/VM   3   3  
    architecture   4   4  
    technology   5  

    View Slide

  20. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    1. Room-level resource
    management
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   20  
    Chip   Server   Rack   Room   MulE-­‐
    room  
    Sched  &  alloc   2   1
    app  
    OS/middleware  
    Compiler/VM   3   3  
    architecture   4   4  
    technology   5  

    View Slide

  21. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Leveraging heterogeneity
    •  Use  heterogeneity  to  minimize  energy  
    consumpHon  from  a  staHc/dynamic  point  of  view  
    –  StaEc:  Finding  the  best  data  center  set-­‐up,  given  a  
    number  of  heterogeneous  machines  
    –  Dynamic:  OpHmizaHon  of  task  allocaHon  in  the  
    Resource  Manager  
    •  We  show  that  the  best  soluHon  implies  an  
    heterogeneous  data  center  
    –  Most  data  centers  are  heterogeneous  (several  
    generaHons  of  computers)  
    21  
    CCGrid 2012
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  
    M.  Zapater,  J.M.  Moya,  J.L.  Ayala.  Leveraging  Heterogeneity  for  
    Energy  MinimizaHon  in  Data  Centers,  CCGrid  2012  

    View Slide

  22. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Current scenario
    22  
    WORKLOAD  
    Scheduler   Resource    
    Manager  
    ExecuEon  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  23. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Potential improvements
    with best practices
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   23  
    ot aisle
    0
    200
    400
    600
    800
    1000
    1200
    1400
    0 20 40 60 80 100
    Power (KW)
    job size relative to data center capacity (%)
    Total power (computing and cooling) for various scheduling approaches
    savings by minimizing computing power
    savings by minimizing the recirculation’s effect
    savings by turning off idle machines
    unaddressed heat recirculation cost
    basic (unavoidable) cost
    max computing power, worst thermal placement
    min computing power, worst thermal placemenit
    optimal computing+cooling
    optimal computing+cooling, shut off idles
    optimal computing+cooling, shut off idles, no recirculation
    Fig. 3. Data center operation cost (in kilowatts) for various “savings
    modes”. Savings are based on heat recirculation data obtained by

    View Slide

  24. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Cooling-aware scheduling and
    resource allocation
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   24  
    0
    50
    100
    150
    200
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (a) 40 jobs, 25014 core-hours, idle servers on
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.197 jobs/hr 0.197 jobs/hr 0.172 jobs/hr 0.197 jobs/hr 0.163 jobs/hr
    18.41 hr 18.41 hr 20.75 hr 18.41 hr 51.75 hr
    3.4 ms 6.9 ms 213 ms 23 min 40 min
    0% 6.2% 8.6% 8.7% 10.2%
    cooling energy
    computing energy
    (a)
    0
    5
    10
    15
    20
    25
    30
    35
    40
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (a) 40 jobs, 25014 core-hours, idle servers off
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.197 jobs/hr 0.197 jobs/hr 0.172 jobs/hr 0.197 jobs/hr 0.163 jobs/hr
    18.41 hr 18.41 hr 20.75 hr 18.41 hr 38.02 hr
    3.4 ms 6.9 ms 213 ms 23 min 43 min
    0% 11.8% 54.7% 21.8% 60.5%
    cooling energy
    computing energy
    (b)
    0
    50
    100
    150
    200
    250
    300
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (b) 120 jobs, 16039 core-hours, idle servers on
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.580 jobs/hr 0.580 jobs/hr 0.349 jobs/hr 0.580 jobs/hr 0.254 jobs/hr
    8.98 hr 8.98 hr 12.17 hr 8.98 hr 48.49 hr
    170 ms 186 ms 397 ms 40.8 min 88.6 min
    0% 1.7% 4.1% 3.6% 4.7%
    cooling energy
    computing energy
    (c)
    0
    5
    10
    15
    20
    25
    30
    35
    40
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (b) 120 jobs, 16039 core-hours, idle servers off
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.580 jobs/hr 0.580 jobs/hr 0.349 jobs/hr 0.580 jobs/hr 0.427 jobs/hr
    8.98 hr 8.98 hr 12.17 hr 8.98 hr 17.75 hr
    171 ms 186 ms 397 ms 42 min 100 min
    0% 4.0% 14.6% 14.2% 15.1%
    cooling energy
    computing energy
    (d)
    300
    350
    400
    450
    (GJ)
    Energy consumption, Scenario (c) 174 jobs, 45817 core-hours, idle servers on
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.892 jobs/hr 0.892 jobs/hr 0.861 jobs/hr 0.892 jobs/hr 0.561 jobs/hr
    9.99 hr 9.99 hr 13.39 hr 9.99 hr 65.38 hr
    173 ms 196 ms 346 ms 20 min 142 min
    0% 2.5% 5.9% 9.4% 12.5%
    cooling energy
    computing energy
    80
    100
    (GJ)
    Energy consumption, Scenario (c) 174 jobs, 45817 core-hours, idle servers off
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.892 jobs/hr 0.892 jobs/hr 0.861 jobs/hr 0.892 jobs/hr 0.590 jobs/hr
    9.99 hr 9.99 hr 13.39 hr 9.99 hr 61.49 hr
    173 ms 191 ms 346 ms 21 min 147 min
    0.0% 7.5% 17.3% 25.7% 41.4%
    cooling energy
    computing energy
    0
    50
    100
    150
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Turnaround time
    Alg. runtime
    Energy savings
    18.41 hr 18.41 hr 20.75 hr 18.41 hr 51.75 hr
    3.4 ms 6.9 ms 213 ms 23 min 40 min
    0% 6.2% 8.6% 8.7% 10.2%
    (a)
    0
    5
    10
    15
    20
    25
    30
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.197 jobs/hr 0.197 jobs/hr 0.172 jobs/hr 0.197 jobs/hr 0.163 jobs/hr
    18.41 hr 18.41 hr 20.75 hr 18.41 hr 38.02 hr
    3.4 ms 6.9 ms 213 ms 23 min 43 min
    0% 11.8% 54.7% 21.8% 60.5%
    (b)
    0
    50
    100
    150
    200
    250
    300
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (b) 120 jobs, 16039 core-hours, idle servers on
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.580 jobs/hr 0.580 jobs/hr 0.349 jobs/hr 0.580 jobs/hr 0.254 jobs/hr
    8.98 hr 8.98 hr 12.17 hr 8.98 hr 48.49 hr
    170 ms 186 ms 397 ms 40.8 min 88.6 min
    0% 1.7% 4.1% 3.6% 4.7%
    cooling energy
    computing energy
    (c)
    0
    5
    10
    15
    20
    25
    30
    35
    40
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (b) 120 jobs, 16039 core-hours, idle servers off
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.580 jobs/hr 0.580 jobs/hr 0.349 jobs/hr 0.580 jobs/hr 0.427 jobs/hr
    8.98 hr 8.98 hr 12.17 hr 8.98 hr 17.75 hr
    171 ms 186 ms 397 ms 42 min 100 min
    0% 4.0% 14.6% 14.2% 15.1%
    cooling energy
    computing energy
    (d)
    0
    50
    100
    150
    200
    250
    300
    350
    400
    450
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (c) 174 jobs, 45817 core-hours, idle servers on
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.892 jobs/hr 0.892 jobs/hr 0.861 jobs/hr 0.892 jobs/hr 0.561 jobs/hr
    9.99 hr 9.99 hr 13.39 hr 9.99 hr 65.38 hr
    173 ms 196 ms 346 ms 20 min 142 min
    0% 2.5% 5.9% 9.4% 12.5%
    cooling energy
    computing energy
    (e)
    0
    20
    40
    60
    80
    100
    FCFS-FF FCFS-LRH EDF-LRH FCFS-Xint SCINT
    energy consumed (GJ)
    Energy consumption, Scenario (c) 174 jobs, 45817 core-hours, idle servers off
    Throughput
    Turnaround time
    Alg. runtime
    Energy savings
    0.892 jobs/hr 0.892 jobs/hr 0.861 jobs/hr 0.892 jobs/hr 0.590 jobs/hr
    9.99 hr 9.99 hr 13.39 hr 9.99 hr 61.49 hr
    173 ms 191 ms 346 ms 21 min 147 min
    0.0% 7.5% 17.3% 25.7% 41.4%
    cooling energy
    computing energy
    (f)
    Fig. 8. Energy comparison of the simulated schemes for the three scenarios. The plots correspond in respective positions to the plots of Figure 7.
    policy used in the data center, which enables job execution as soon as they arrive if the queue is empty and the data
    center is lightly loaded. In the “idle-on” case (Figure 8a), the total energy consumption using SCINT, EDF-LRH,
    iMPACT Lab (Arizona State U)

    View Slide

  25. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    25  
    LSI-UPM
    WORKLOAD  
    Resource    
    Manager  
    (SLURM)  
    ExecuEon  
    Profiling  and  
    ClassificaEon  
    Energy    
    OpEmizaEon  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  26. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    •  Workload:  
    –  12  tasks  from  SPEC  CPU  INT  2006  
    –  Random  workload  composed  by  2000  tasks,  divided  into  
    job  sets  
    –  Random  job  set  arrival  Hme  
    •  Servers:  
    26  
    Scenario
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  27. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    27  
    Energy profiling
    WORKLOAD  
    Resource    
    Manager  
    (SLURM)  
    ExecuEon  
    Profiling  and  
    ClassificaEon  
    Energy    
    OpEmizaEon  
    Energy  profiling  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  28. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Workload characterization
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   28  

    View Slide

  29. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    29  
    Optimization
    WORKLOAD  
    Resource    
    Manager  
    (SLURM)  
    ExecuEon  
    Profiling  and  
    ClassificaEon  
    Energy    
    OpEmizaEon  
    Energy  MinimizaEon:  
    •   MinimizaEon  subjected  to  constraints  
    •   MILP  problem  (solved  with  CPLEX)  
    •   StaEc  and  Dynamic  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  30. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    30  
    Static optimization
    •  DefiniHon  of  opHmal  data  center  
    –  Given  a  pool  of  100  servers  of  each  kind  
    –  1  job  set  from  workload  
    –  The  opHmizer  chooses  the  best  selecHon  of  servers  
    –  Constraints  of  cost  and  space  
    Best  soluEon:  
    •   40  Sparc  
    •   27  AMD  
     
    Savings:  
    •   5  a  22%  energy  
    •   30%  Eme  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  31. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    31  
    Dynamic optimization
    •  OpHmal  workload  allocaHon  
    –  Complete  workload  (2000  tasks)  
    –  Good  enough  resource  allocaHon  in  terms  of  energy  (not  
    the  best)  
    –  Run-­‐Hme  evaluaHon  and  opHmizaHon  
    Energy  savings  
    ranging  from  24%  
    to  47%  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  32. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Application-aware scheduling and
    resource allocation
    •  First  proof-­‐of-­‐concept  regarding  the  use  of  
    heterogeneity  to  save  energy  
    •  AutomaHc  soluHon  
    •  AutomaHc  processor  selecHon  offers  notable  energy  
    savings  
    •  Easy  implementaHon  in  real  scenarios  
    –  SLURM  Resource  Manager  
    –  RealisHc  workloads  and  servers  
    32  
    Conclusions
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012  

    View Slide

  33. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    2. Server-level resource
    management
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   33  
    Chip   Server   Rack   Room   MulE-­‐
    room  
    Sched  &  alloc   2 1  
    app  
    OS/middleware  
    Compiler/VM   3   3  
    architecture   4   4  
    technology   5  

    View Slide

  34. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Scheduling and resource allocation
    policies in MPSoCs
    A.  Coskun  ,  T.  Rosing  ,  K.  Whisnant  and  K.  Gross    "StaHc  and  dynamic  temperature-­‐
    aware  scheduling  for  mulHprocessor  SoCs",    IEEE  Trans.  Very  Large  Scale  Integr.  Syst.,    
    vol.  16,    no.  9,    pp.1127  -­‐1140  2008    
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   34  
    Fig. 3. Distribution of thermal hot spots, with DPM (ILP).
    A. Static Scheduling Techniques
    We next provide an extensive comparison of the ILP based
    techniques. We refer to our static approach as Min-Th&Sp.
    As discussed in Section III, we implemented the ILP for min-
    imizing thermal hot spots (Min-Th), energy balancing (Bal-
    En), and energy minimization (Min-En) to compare against
    Fig. 4. Distribution of spatial gradients, with DPM (ILP).
    hot spots. While Min-Th reduces the high spatial differentials
    above 15 C, we observe a substantial increase in the spatial
    gradients above 10 C. In contrast, our method achieves lower
    and more balanced temperature distribution in the die.
    In Fig. 5, we show how the magnitudes of thermal cycles vary
    with the scheduling method. We demonstrate the average per-
    Fig. 3. Distribution of thermal hot spots, with DPM (ILP).
    A. Static Scheduling Techniques
    We next provide an extensive comparison of the ILP based
    techniques. We refer to our static approach as Min-Th&Sp.
    As discussed in Section III, we implemented the ILP for min-
    imizing thermal hot spots (Min-Th), energy balancing (Bal-
    Fig. 4. Distribution of spatial gradients, with DPM (ILP).
    hot spots. While Min-Th reduces the high spatial differentials
    above 15 C, we observe a substantial increase in the spatial
    gradients above 10 C. In contrast, our method achieves lower
    and more balanced temperature distribution in the die.
    In Fig. 5, we show how the magnitudes of thermal cycles vary
    UCSD – System Energy Efficiency Lab

    View Slide

  35. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Scheduling and resource allocation
    policies in MPSoCs
    •  Energy  characterizaHon  of  applicaHons  allows  
    to  define  proacHve  scheduling  and  resource  
    allocaHon  policies,  minimizing  hotspots  
    •  Hotspot  reducHon  allows  to  raise  cooling  
    temperature  
    +1oC  means  around  7%  cooling  energy  savings  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   35  

    View Slide

  36. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    3. Application-aware and
    resource-aware virtual machine
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   36  
    Chip   Server   Rack   Room   MulE-­‐
    room  
    Sched  &  alloc   2   1  
    app  
    OS/middleware  
    Compiler/VM   3 3
    architecture   4   4  
    technology   5  

    View Slide

  37. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    JIT compilation in
    virtual machines
    •  Virtual  machines  compile  
    (JIT  compilaHon)  the  
    applicaHons  into  naHve  
    code  for  performance  
    reasons  
    •  The  opHmizer  is  general-­‐
    purpose  and  focused  in  
    performance  
    opEmizaEon  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   37  

    View Slide

  38. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Back-­‐end  
    JIT compilation for
    energy minimization
    •  ApplicaHon-­‐aware  compiler  
    –  Energy  characterizaHon  of  applicaHons  and  
    transformaHons  
    –  ApplicaHon-­‐dependent  opHmizer  
    –  Global  view  of  the  data  center  workload  
    •  Energy  opHmizer  
    –  Currently,  compilers  for  high-­‐end  processors  oriented  
    to  performance  opHmizaHon  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   38  
    Front-­‐end  
    OpHmizer   Code  generator  

    View Slide

  39. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Energy saving potential for
    the compiler (MPSoCs)
    T.  Simunic,  G.  de  Micheli,  L.  Benini,  and  M.  Hans.  “Source  code  opHmizaHon  and  
    profiling  of  energy  consumpHon  in  embedded  systems,”  InternaHonal  Symposium  on  
    System  Synthesis,  pages  193  –  199,  Sept.  2000  
    – 77%  energy  reducHon  in  MP3  decoder  
    FEI,  Y.,  RAVI,  S.,  RAGHUNATHAN,  A.,  AND  JHA,  N.  K.  2004.  Energy-­‐opHmizing  source  
    code  transformaHons  for  OS-­‐driven  embedded  soyware.  In  Proceedings  of  the  
    InternaHonal  Conference  VLSI  Design.  261–266.  
    – Up  to  37,9%  (mean  23,8%)  energy  savings  in  
    mulHprocess  applicaHons  running  on  Linux  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   39  

    View Slide

  40. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    4. Global automatic
    management of low-power
    modes
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   40  
    Chip   Server   Rack   Room   MulE-­‐
    room  
    Sched  &  alloc   2   1  
    app  
    OS/middleware  
    Compiler/VM   3   3  
    architecture   4 4
    technology   5  

    View Slide

  41. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    DVFS – Dynamic Voltage
    and Frequency Scaling
    •  As  supply  voltage  decreases,  power  decreases  
    quadraHcally  
    •  But  delay  increases  (performance  decreases)  
    only  linearly  
    •  The  maximum  frequency  also  decreases  
    linearly  
    •  Currently,  low-­‐power  modes,  if  used,  are  
    acHvated  by  inacHvity  of  the  server  operaHng  
    system  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   41  

    View Slide

  42. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Room-level DVFS
    •  To  minimize  energy  consumpHon,  changes  
    between  modes  should  be  minimized  
    •  There  exist  opHmal  algorithms  for  a  known  
    task  set  (YDS)  
    •  Workload  knowledge  allows  to  globally  
    schedule  low-­‐power  modes  without  any  
    impact  in  performance  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   42  

    View Slide

  43. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Parallelism to save energy
    Use of Parallelism
    Use of Parallelism
    V
    dd
    V
    dd
    /2 V
    dd
    /2
    f f /2 f /2
    f
    max
    f
    max
    /2 f
    max
    /2
    9-17
    Swiss Federal
    Institute of Technology
    Computer Engineering
    and Networks Laboratory
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   43  

    View Slide

  44. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    5. Temperature-aware floorplanning of
    MPSoCs and many-cores
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   44  
    Chip   Server   Rack   Room   MulE-­‐
    room  
    Sched  &  alloc   2   1  
    app  
    OS/middleware  
    Compiler/VM   3  
    architecture   4   4  
    technology   5

    View Slide

  45. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Temperature-aware
    floorplanning
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   45  

    View Slide

  46. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Potential energy savings
    with floorplanning
    –  Up  to  21oC  reducHon  of  maximum  temperature  
    –  Mean:  -­‐12oC  in  maximum  temperature  
    –  Bejer  results  in  the  most  criHcal  examples  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   46  
    Temperature Reductions
    Average MaxTemp reduction: 12 oC
    Larger temperature reductions for benchmarks
    with higher maximum temperature
    For many benchmarks, temperature reducions are
    larger than 20 oC
    Maximum Temperature
    0
    20
    40
    60
    80
    100
    120
    140
    ammp
    applu
    apsi
    art
    bzip2
    crafty
    eon
    equake
    facerec
    fma3d
    gap
    gcc
    gzip
    lucas
    mcf
    mesa
    mgrid
    parser
    perlbmk
    swim
    twolf
    vortex
    vpr
    wupwise
    avg
    original modified
    Y.  Han,  I.  Koren,  and  C.  A.  Moritz.  Temperature  Aware  Floorplanning.  In  Proc.  of  the    
    Second  Workshop  on  Temperature-­‐Aware  Computer  Systems,  June  2005  

    View Slide

  47. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Temperature-aware
    floorplanning in 3D chips
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   47  
    •  3D  chips  are  gezng  interest  due  to:  
    –  ↑  ↑    Scalability:  reduces  2D  equivalent  
    area  
    –  ↑  ↑    Performance:  shorter  wire  length  
    –  ↑  Reliability:  less  wiring  
     
    •  Drawback:  
    –  Huge  increment  of  hotspots      
    compared  with  2D  equivalent  designs  

    View Slide

  48. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Temperature-aware
    floorplanning in 3D chips
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   48  
    •  Up  to  30oC  reducHon  per  layer  in  a  3D  chip  
    with  4  layers  and  48  cores  

    View Slide

  49. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    There is still much more
    to be done
    •  Smart  Grids  
    – Consume  energy  when  everybody  else  does  not  
    – Decrease  energy  consumpHon  when  everybody  
    else  is  consuming  
    •  Reducing  the  electricity  bill  
    – Variable  electricity  rates  
    – ReacHve  power  coefficient  
    – Peak  energy  demand  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   49  

    View Slide

  50. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Conclusions
    •  Reducing  PUE  is  not  the  same  as  reducing  energy  
    consumpHon  
    –  IT  energy  consumpHon  dominates  in  state-­‐of-­‐the-­‐art  data  
    centers  
    •  ApplicaHon  and  resources  knowledge  can  be  effecHvely  
    used  to  define  proacEve  policies  to  reduce  the  total  energy  
    consumpHon  
    –  At  different  levels  
    –  In  different  scopes  
    –  Taking  into  account  cooling  and  computaHon  at  the  same  Hme  
    •  Proper  management  of  the  knowledge  of  the  data  center  
    thermal  behavior  can  reduce  reliability  issues  
    •  Reducing  energy  consumpHon  is  not  the  same  as  reducing  
    the  electricity  bill  
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   50  

    View Slide

  51. “Ingeniamos el futuro”!
    CAMPUS OF
    INTERNATIONAL
    EXCELLENCE
    Contact
    José  M.Moya  |    Madrid  (Spain),  July  27,  2012   51  
    José M. Moya
    +34  607  082  892  
    [email protected]  
     
    ETSI de Telecomunicación, B104
    Avenida Complutense, 30
    Madrid 28040, Spain
    Gracias:  

    View Slide