Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms for Gerrymandering over Graphs
Search
hanachiru
July 27, 2020
Education
0
210
Algorithms for Gerrymandering over Graphs
hanachiru
July 27, 2020
Tweet
Share
More Decks by hanachiru
See All by hanachiru
1時間でフラグメントシェーダー入門からボロノイ図まで
hanachiru
0
1.7k
Other Decks in Education
See All in Education
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
670
AI for Learning
fonylew
0
180
OJTに夢を見すぎていませんか? ロールプレイ研修の試行錯誤/tryanderror-in-roleplaying-training
takipone
1
220
みんなのコードD&I推進レポート2025 テクノロジー分野のジェンダーギャップとその取り組みについて
codeforeveryone
0
210
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
170
Sponsor the Conference | VizChitra 2025
vizchitra
0
620
Common STIs in London: Symptoms, Risks & Prevention
medicaldental
0
140
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
140
Tutorial: Foundations of Blind Source Separation and Its Advances in Spatial Self-Supervised Learning
yoshipon
1
150
チーム開発における責任と感謝の話
ssk1991
0
260
Padlet opetuksessa
matleenalaakso
4
14k
万博非公式マップとFOSS4G
barsaka2
0
1.1k
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
820
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Building Adaptive Systems
keathley
43
2.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
A Tale of Four Properties
chriscoyier
160
23k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Six Lessons from altMBA
skipperchong
28
4k
Transcript
グラフ上のGerrymanderingのための アルゴリズム Algorithms for Gerrymandering over Graphs Takehiro Ito, Naoyuki
Kamiyama, Yusuke Kobayashi, Yoshio Okamoto, Ph.D. 名無しの権兵衛 1
ストーリー 2 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 1. 有権者を区分けする 2. それぞれの選挙区から候補者を一人を選びだす 3. 勝利した選挙区が最も多い候補者が最終的に当選する
候補者qが当選 青×3, 赤×0 → 青 青×2, 赤×1 → 青 青×4, 赤×2 → 青 青×3, 赤×0 → 青
ストーリー 3 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 候補者qが当選 どうしても候補者pを勝たせたい! あなた
ストーリー 4 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤
ストーリー 5 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤 目的 :ゲリマンダリングが可能か判定するアルゴリズムを 多項式時間で解けるかという観点から調べる
ゲリマンダリング 6 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 7 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q=0, p=1 → {p} q = 1+2+3 = 6, p=0 → {q} q=5, p=6 → {p} 出力:q×1, p×2 => YES 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 8 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 9 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 10 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q = 1+ 5 = 6, p=6 →{p, q} q=2, p=0 → {q} q=3, p=0 → {q} q=0, p=1 → {p} 例. 候補者 = {p, q}, 目的候補者p, 分割数=4 出力:q×3, p×1 => NO タイブレイクを考慮すると目的候補は単独,それ 以外の候補は含むことでカウントする
本論文の結果 11 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ?
本論文の結果 12 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
NP完全性 13 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である e.g. 完全二部グラフ 完全グラフ
NP完全性 14 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
Partition問題 15 Partition問題 入力:n個の自然数の集合 a1 ,a2 , … , an
出力: となるようなS∈{1,2,...,n}があればYES,なければNO (例1) 入力 : n = 4, a1 =1, a2 =3, a3 =1, a4 =1 出力: YES (例2) 入力 : n = 4, a1 =1, a2 =3, a3 =5, a4 =11 出力: NO S = {1, 3, 4}のとき a1 + a3 + a4 =1 + 1 + 1 = 3 a2 = 3 条件を満たす Sは存在しない
インスタンスの変換 16 Partition問題 入力 : n = 4, a1 =1, a2
=3, a3 =1, a4 =1 出力: YES Gerrymandering問題 入力 : 無向グラフ,分割数k=2,候補者数|C|=2 出力 : ? p p 1 q 3 q 1 q 1 q 3.3 3.3 pを選ぶ重み0.5(a1 +a2 +...+an )+εの頂点を2個 => 0.5(1+3+1+1)+0.3 qを選ぶ a1 , a2 , ..., an に対応した頂点を用意
定理1の証明のポイント 17 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換
定理1の証明のポイント 18 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ pが0個, qが2個となり 実行可能解はない
定理1の証明のポイント 19 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ pが1個, qが1個となり 実行可能解はない
定理1の証明のポイント 20 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦ pが2個, qが0個となり 実行可能解があり
定理1の証明のポイント 21 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 目的候補pを選ぶ点は二つしかないので, 各区間に1つずつ分ける すると,2つの区間がおのずと導ける 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦
NP完全性 22 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
本論文の結果 23 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
まとめ ・ゲリマンダリング 問題の定義 ・グラフ上でのGerrymandering問題の困難性の証明 ・Gerrymandering問題の多項式時間アルゴリズム構築 24