Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms for Gerrymandering over Graphs
Search
hanachiru
July 27, 2020
Education
0
170
Algorithms for Gerrymandering over Graphs
hanachiru
July 27, 2020
Tweet
Share
More Decks by hanachiru
See All by hanachiru
1時間でフラグメントシェーダー入門からボロノイ図まで
hanachiru
0
1.5k
Other Decks in Education
See All in Education
Chapitre_1_-__L_atmosphère_et_la_vie_-_Partie_1.pdf
bernhardsvt
0
220
世界のオープンソースロボットたち #1
shiba_8ro
0
140
セキュリティ・キャンプ全国大会2024 S17 探査機自作ゼミ 事前学習・当日資料
sksat
3
850
Comezando coas redes
irocho
0
370
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.5k
Adobe Analytics入門講座【株式会社ニジボックス】
nbkouhou
0
19k
cbt2324
cbtlibrary
0
110
Qualtricsで相互作用実験する「SMARTRIQS」入門編
kscscr
0
320
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
700
Ch2_-_Partie_3.pdf
bernhardsvt
0
100
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
170
情報処理工学問題集 /infoeng_practices
kfujita
0
120
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Facilitating Awesome Meetings
lara
50
6.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Building Your Own Lightsaber
phodgson
103
6.1k
Designing the Hi-DPI Web
ddemaree
280
34k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
How to Think Like a Performance Engineer
csswizardry
20
1.1k
How GitHub (no longer) Works
holman
310
140k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Transcript
グラフ上のGerrymanderingのための アルゴリズム Algorithms for Gerrymandering over Graphs Takehiro Ito, Naoyuki
Kamiyama, Yusuke Kobayashi, Yoshio Okamoto, Ph.D. 名無しの権兵衛 1
ストーリー 2 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 1. 有権者を区分けする 2. それぞれの選挙区から候補者を一人を選びだす 3. 勝利した選挙区が最も多い候補者が最終的に当選する
候補者qが当選 青×3, 赤×0 → 青 青×2, 赤×1 → 青 青×4, 赤×2 → 青 青×3, 赤×0 → 青
ストーリー 3 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 候補者qが当選 どうしても候補者pを勝たせたい! あなた
ストーリー 4 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤
ストーリー 5 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤 目的 :ゲリマンダリングが可能か判定するアルゴリズムを 多項式時間で解けるかという観点から調べる
ゲリマンダリング 6 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 7 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q=0, p=1 → {p} q = 1+2+3 = 6, p=0 → {q} q=5, p=6 → {p} 出力:q×1, p×2 => YES 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 8 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 9 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 10 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q = 1+ 5 = 6, p=6 →{p, q} q=2, p=0 → {q} q=3, p=0 → {q} q=0, p=1 → {p} 例. 候補者 = {p, q}, 目的候補者p, 分割数=4 出力:q×3, p×1 => NO タイブレイクを考慮すると目的候補は単独,それ 以外の候補は含むことでカウントする
本論文の結果 11 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ?
本論文の結果 12 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
NP完全性 13 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である e.g. 完全二部グラフ 完全グラフ
NP完全性 14 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
Partition問題 15 Partition問題 入力:n個の自然数の集合 a1 ,a2 , … , an
出力: となるようなS∈{1,2,...,n}があればYES,なければNO (例1) 入力 : n = 4, a1 =1, a2 =3, a3 =1, a4 =1 出力: YES (例2) 入力 : n = 4, a1 =1, a2 =3, a3 =5, a4 =11 出力: NO S = {1, 3, 4}のとき a1 + a3 + a4 =1 + 1 + 1 = 3 a2 = 3 条件を満たす Sは存在しない
インスタンスの変換 16 Partition問題 入力 : n = 4, a1 =1, a2
=3, a3 =1, a4 =1 出力: YES Gerrymandering問題 入力 : 無向グラフ,分割数k=2,候補者数|C|=2 出力 : ? p p 1 q 3 q 1 q 1 q 3.3 3.3 pを選ぶ重み0.5(a1 +a2 +...+an )+εの頂点を2個 => 0.5(1+3+1+1)+0.3 qを選ぶ a1 , a2 , ..., an に対応した頂点を用意
定理1の証明のポイント 17 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換
定理1の証明のポイント 18 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ pが0個, qが2個となり 実行可能解はない
定理1の証明のポイント 19 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ pが1個, qが1個となり 実行可能解はない
定理1の証明のポイント 20 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦ pが2個, qが0個となり 実行可能解があり
定理1の証明のポイント 21 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 目的候補pを選ぶ点は二つしかないので, 各区間に1つずつ分ける すると,2つの区間がおのずと導ける 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦
NP完全性 22 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
本論文の結果 23 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
まとめ ・ゲリマンダリング 問題の定義 ・グラフ上でのGerrymandering問題の困難性の証明 ・Gerrymandering問題の多項式時間アルゴリズム構築 24