Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Power BI Premiumでデータ準備!
Search
Akihiro Suto
May 03, 2022
Technology
1
950
Power BI Premiumでデータ準備!
Power BI 勉強会GW合宿 2022第壱夜~夜のデータ準備~
https://powerbi.connpass.com/event/246419/
こちらで発表した内容です。
Akihiro Suto
May 03, 2022
Tweet
Share
More Decks by Akihiro Suto
See All by Akihiro Suto
JPPC2023_BI08_セマンティックモデルを覗き見る(公開用)
hanaseleb
0
4.4k
プッシュデータセットを試してみよう
hanaseleb
0
520
レポートをつくる、その先の運用を考える🤔 Power BI Report Ops
hanaseleb
0
4.8k
Power BI データフローを考える
hanaseleb
1
1.5k
DAXクエリをDAX Studioでつくって、Power Automateで発射する💪
hanaseleb
1
2.5k
BIのPowerをAutomateする
hanaseleb
0
430
Power BI のうらがわ
hanaseleb
2
770
ゼロからはじめたPower BI
hanaseleb
1
1.1k
Power Automateドリブンのチームマネジメント
hanaseleb
0
670
Other Decks in Technology
See All in Technology
複雑なState管理からの脱却
sansantech
PRO
1
140
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
0
110
The Rise of LLMOps
asei
7
1.5k
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
120
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
1
990
社内で最大の技術的負債のリファクタリングに取り組んだお話し
kidooonn
1
550
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.6k
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
生成AIが変えるデータ分析の全体像
ishikawa_satoru
0
110
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
300
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
170
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
Happy Clients
brianwarren
98
6.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Building Adaptive Systems
keathley
38
2.3k
What's in a price? How to price your products and services
michaelherold
243
12k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
How GitHub (no longer) Works
holman
310
140k
What's new in Ruby 2.0
geeforr
343
31k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Transcript
Power BI 勉強会 GW合宿 2022 第壱夜 夜のデータ準備
須藤 明洋 すとう あきひろ 秋田県 出身 集英社 勤務 Power BI
2021.04~ Python 2021.09~ Rugby 1991.04~ Kendama 2020.04~
Power BI Premiumでデータ準備
• Power BI Premiumの一部機能をご紹介 ◦ 💎配置パイプライン ◦ 💎データフロー ◦ 💎高度なAI
◦ 💎機械学習 Power BI Premiumでデータ準備
配置パイプライン
• BI 作成者は組織のコンテンツのライフサイクルを管理 ◦ 開発環境→テスト環境→プロダクション環境 ◦ パラメーターの管理 ◦ データベースの変更 配置パイプライン
None
None
None
None
None
None
None
None
None
None
None
None
None
None
• 開発環境 100行 ◦ インポートしたときに作業しやすい • テスト環境 1,000,000行 ◦ 前年比など確認
• 運用環境 1,000,000,000行 → 全データ 配置パイプライン
• 開発環境 100行 ◦ インポートしたときに作業しやすい • テスト環境 1,000,000行 ◦ 前年比など確認
• 運用環境 1,000,000,000行 → 全データ 配置パイプライン Power BI Desktop Power BI Service
Dataflow
• Power BI 内の多くのデータセットおよびレポートで共有できる再利用 可能な変換ロジックを作成できる。 ◦ Power Query Online •
独自の Azure Data Lake Storage Gen 2 内にデータが公開される。 Dataflow
None
• データフローを使用することで、データソースに何度もアクセスされる ことを防ぐことができる。 → Azure Data Lake Storage Gen2 にアクセス
Dataflow
None
None
None
• データフローを使用することで、データソースに何度もアクセスされる ことを防ぐことができる。 → Azure Data Lake Storage Gen2 にアクセス
• アクセス負荷軽減 • セキュリティ • 権限設計 Dataflow
Power BI Premium の Dataflow
• 💎処理の高速化 • 💎増分更新 • 💎リンクテーブル • 💎計算テーブル Power BI
Premium の Dataflow
💎処理の高速化
• Power BI Pro ◦ ベスト エフォート • Power BI
Premium ◦ 専用容量が割り当てられる →処理が早い 💎処理の高速化
💎処理の高速化 • Pro環境 • Premium環境 データ読込速度比較
💎処理の高速化 • Pro環境:更新時間の制限 ◦ 個々のエンティティのレベルで 2 時間 ◦ データフロー全体のレベルで 3
時間
None
💎処理の高速化 • Premium環境:更新時間の制限 ◦ データフロー全体のレベルで 24 時間
None
• 例が良くない ◦ すみません • 体感時間 ◦ 半分くらい 💎処理の高速化
💎増分更新
• Datasetの増分更新 ◦ Proライセンスでも可能 • Dataflowの増分更新 ◦ Premiumライセンスが必要 💎増分更新
• 更新が高速化される • 更新の信頼性が高くなる • リソースの使用が減る 💎増分更新
None
None
None
None
💎リンクテーブル&💎計算テーブル
• 💎リンクテーブル ◦ 既存のデータフローを参照する。 ◦ 複数のデータフロー内で再利用できるテーブルを作成する。 💎リンクテーブル&💎計算テーブル
None
None
None
• 💎計算テーブル ◦ リンク テーブルを参照し、書き込み専用の方法でそのテーブルに 対して操作を実行する。 ◦ その結果として新しいテーブルが作成される。 💎リンクテーブル&💎計算テーブル
None
None
データフローを使用してデ ータ ウェアハウスを作成す るためのベスト プラクティ ス - Power Query |
Microsoft Docs
データフローを使用してデータ ウェアハウスを作成する ためのベスト プラクティス - Power Query | Microsoft Docs
シナリオに沿って紹介 ◦ 夏のフェア 『ナツコミ』 ◦ Twitterの反応を可視化したい 💎リンクテーブル&💎計算テーブル
None
None
None
データ前処理
高度なAI
• テキストアナリティクス • 画像へのタグ付け 高度なAI
• テキストアナリティクス 自然言語処理 ◦ 言語の特定 ◦ キーフレーズ抽出 ◦ 感情スコア 高度なAI
None
None
None
None
None
None
データ前処理
データ前処理
• 更新のオーケストラレーション ◦ 同じワークスペースに存在する場合 ◦ 上流のデータが更新されると下流のリンクテーブル、計算テーブル は順次更新される。 💎リンクテーブル&💎計算テーブル
None
None
None
None
None
None
None
None
機械学習
• 経験からの学習により自動で改善するコンピューターアルゴリズム 機械学習 機械学習 - Wikipedia
• Power BI のAutoML ◦ 二項分類 ◦ 多項分類 ◦ 回帰
機械学習 データフローと共に Machine Learning と Cognitive Services を使用する - Power BI | Microsoft Docs
DEMO Diamond データセット カラット カラーなどから 価格を予測する 機械学習 pycaret/pycaret: An open-source,
low-code machine learning library in Python (github.com)
None
ほかにも、 • データフローへのダイレクトクエリ • ページ分割されたレポート • 最大48回更新 などなど Power BI
Premium 便利! Power BI Premium の機能。 - Power BI | Microsoft Docs
ほかにも、 • データフローへのダイレクトクエリ • ページ分割されたレポート • 最大48回更新 などなど Power BI
Premium 便利! Power BI Premium の機能。 - Power BI | Microsoft Docs もう戻れない
None