creating and managing machine learning models. • Deploy it as a web application. Interact via Python API (see code example) and Web UI. • Keeps track of model executable files, parameters, model versions, performance metrics and data visualization files. Example #2 - Organized Machine Learning with MLflow # Get training data train_x, train_y, test_x, test_y = get_train_data() with mlflow.start_run(): # Train a model model = ElasticNet(alpha=0.5, l1_ratio=0.5) model.fit(train_x, train_y) # Evaluate performance y_pred = model.predict(test_x) (rmse, mae, r2) = eval_metrics(test_y, y_pred) # Record model parameters mlflow.log_param("alpha", alpha) mlflow.log_param("l1_ratio", l1_ratio) # Record performance metrics mlflow.log_metric("rmse", rmse) mlflow.log_metric("r2", r2) mlflow.log_metric("mae", mae) # Save model executable file mlflow.sklearn.log_model( model, artifact_path="model", registered_model_name="MyFirstModel" ) Image: Databricks Comparing model performance via the UI Training and saving a new model to MLflow