Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Celeryの紹介と本番運用のTips
Search
Hank Ehly
August 24, 2023
Programming
0
530
Celeryの紹介と本番運用のTips
Hank Ehly
August 24, 2023
Tweet
Share
More Decks by Hank Ehly
See All by Hank Ehly
Fivetranでデータ移動を自動化する
hankehly
0
460
ChatGPTを活用した 便利ツールの紹介
hankehly
1
1.2k
Efficient Energy Analytics with Airflow, Spark, and MLFlow
hankehly
0
220
Deferrable Operators入門
hankehly
0
420
【初心者/ハンズオン】Dockerコンテナの基礎知識
hankehly
0
400
Compositeパターン: オブジェクトの階層関係をエレガントに表現する方法
hankehly
0
260
10/29 Airflowの基礎を学ぶハンズオンワークショップ
hankehly
0
200
システム/データ品質保証のための Airflow 活用法
hankehly
0
490
海外の記事からコードレビューのBest Practiceを集めてみました
hankehly
0
850
Other Decks in Programming
See All in Programming
短期間での新規プロダクト開発における「コスパの良い」Goのテスト戦略」 / kamakura.go
n3xem
2
170
MCP with Cloudflare Workers
yusukebe
2
220
「Chatwork」Android版アプリを 支える単体テストの現在
okuzawats
0
180
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
120
創造的活動から切り拓く新たなキャリア 好きから始めてみる夜勤オペレーターからSREへの転身
yjszk
1
130
ソフトウェアの振る舞いに着目し 複雑な要件の開発に立ち向かう
rickyban
0
890
数十万行のプロジェクトを Scala 2から3に完全移行した
xuwei_k
0
270
命名をリントする
chiroruxx
1
390
【re:Growth 2024】 Aurora DSQL をちゃんと話します!
maroon1st
0
770
Haze - Real time background blurring
chrisbanes
1
510
SymfonyCon Vienna 2025: Twig, still relevant in 2025?
fabpot
3
1.2k
103 Early Hints
sugi_0000
1
230
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
Embracing the Ebb and Flow
colly
84
4.5k
Navigating Team Friction
lara
183
15k
The Pragmatic Product Professional
lauravandoore
32
6.3k
Into the Great Unknown - MozCon
thekraken
33
1.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
A better future with KSS
kneath
238
17k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Agile that works and the tools we love
rasmusluckow
328
21k
Transcript
Celeryの紹介と 本番運用のTips 2023/08/23 (水)
よろしくお願いします • Hank Ehly(ハンク・イーリー) • Slalom株式会社(スラロム) • Data & Analytics
シニアコンサルタント • https://hankehly.com • https://qiita.com/hankehly • https://github.com/hankehly • https://medium.com/@hankehly • https://www.twitter.com/hankehly • https://www.linkedin.com/in/hankehly
アジェンダ 1. Celeryの What・Why・Where・How 2. 本番運用の Tips
CeleryのWhat・Why・Where・How
• PythonのタスクキューのOSSフレームワーク • オープンソース(★22k、1,000以上のコントリビュータ、人気) What is Celery Celeryクライアント Celeryブローカー Celeryワーカー(複数可能)
他もある…
What is Celery (contd.) 非同期的に行われる
Why use Celery 計算・レポート出力
Why use Celery 計算・レポート出力
Why use Celery 計算・レポート出力
Why use Celery (contd.) ウェブサーバーの状況 ウェブサーバー に仕事させる時 Celeryに仕事 を委託する時 レスポンス時間
• ウェブサーバーにたくさん仕事さ せると、他のリクエストへの応答 が遅くなり、CPU/メモリー使用 率が高くなる Why use Celery (contd.) ウェブサーバーの状況
ウェブサーバー に仕事させる時 Celeryに仕事 を委託する時 レスポンス時間
• ウェブサーバーにたくさん仕事さ せると、他のリクエストへの応答 が遅くなり、CPU/メモリー使用 率が高くなる • Celeryワーカーに仕事を渡すと、 ウェブサーバーのリソースを節約 できて、応答を早くすることができ る
Why use Celery (contd.) ウェブサーバーの状況 ウェブサーバー に仕事させる時 Celeryに仕事 を委託する時 レスポンス時間
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
How to use Celery 1. Install from celery import Celery
app = Celery('tasks', broker='redis://...') @app.task def add(x, y): return x + y pip install celery 2. アプリケーション定義 Celeryクライアント Celeryブローカー Celeryワーカー(複数可能) 例えば…
How to use Celery 3. ワーカーを立ち上げる celery -A tasks worker
from tasks import add >>> result = add.delay(4, 4) # 呼び出す >>> result.get() # 終わるまで待つ 4. タスクを呼び出す Celeryクライアント Celeryブローカー Celeryワーカー(複数可能) 例えば… ※複数のワーカーを使う場合は環境ごとに実行
本番運用のTips
1. ヘルスチェックは「ping」コマンドを使おう celery -A myapp inspect ping --destination celery@${HOSTNAME} 設定項目
設定値 interval 30 timeout 15 startPeriod 10 retries 5 ヘルスチェックの実行間隔 (ゆるめな設定がおすすめ)
2. 回復可能なエラーが起きたら再実行しよう
2. 回復可能なエラーが起きたら再実行しよう
3. ブローカーの選定 評価ポイント Redis RabbitMQ SQS リモートコマンド (pingなど) ◯ ◯
X Taskの結果保存ができ る ◯ △ X メッセージを送れなかっ たら、どうなる? △ 再配信されない ◯ 再配信される ◯ 再配信される ヘルスチェックどうする?? データロスが(より) 起きやすい
4. モニタリングツールを入れよう flowerはCeleryワーカーの健 康状態を監視するツール Celeryワーカー・実行中のタス クの状況を可視化 デバッグ・パフォーマンスチュー ニングに役立つ コンテナイメージ・バイナリのデ プロイ方法はブログ記事まで
…→ (flowerの管理画面)
5. Spotインスタンスの中断対策 @app.task def not_atomic_not_idempotent_task(): delete_rows() insert_rows() now = int(time.time())
create_file(name="backup-{now}.csv") @app.task def atomic_and_idempotent_task(filename): with transaction.atomic(): delete_rows() insert_rows() create_file(name=filename) コケたらシステムは変な状態のまま (リトライできない) コケても何度でもリトライできる! 1. タスクを安全にリトライできるように実装する(アトミック・冪等である)
5. Spotインスタンスの中断対策 @app.task def not_atomic_not_idempotent_task(): delete_rows() insert_rows() now = int(time.time())
create_file(name="backup-{now}.csv") @app.task def atomic_and_idempotent_task(filename): with transaction.atomic(): delete_rows() insert_rows() create_file(name=filename) コケたらシステムは変な状態のまま (リトライできない) コケても何度でもリトライできる! 1. タスクを安全にリトライできるように実装する(アトミック・冪等である) 2. 自動再スケジューリングの必須設定 task_acks_late True task_reject_on_worker_lost True タスク終了後にAckする Celeryワーカーが異常終了し たら、タスク再実行してね
5. Spotインスタンスの中断対策 3. 目指すべきタスクの実行時間は …(ブログ記事までお願いします!)
ご清聴ありがとうございます • Hank Ehly(ハンク・イーリー) • Slalom株式会社(スラロム) • Data & Analytics
シニアコンサルタント • https://hankehly.com • https://qiita.com/hankehly • https://github.com/hankehly • https://medium.com/@hankehly • https://www.twitter.com/hankehly • https://www.linkedin.com/in/hankehly 他のTipsはここ