Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Celeryの紹介と本番運用のTips
Search
Hank Ehly
August 24, 2023
Programming
0
510
Celeryの紹介と本番運用のTips
Hank Ehly
August 24, 2023
Tweet
Share
More Decks by Hank Ehly
See All by Hank Ehly
Fivetranでデータ移動を自動化する
hankehly
0
450
ChatGPTを活用した 便利ツールの紹介
hankehly
1
1.2k
Efficient Energy Analytics with Airflow, Spark, and MLFlow
hankehly
0
220
Deferrable Operators入門
hankehly
0
390
【初心者/ハンズオン】Dockerコンテナの基礎知識
hankehly
0
380
Compositeパターン: オブジェクトの階層関係をエレガントに表現する方法
hankehly
0
250
10/29 Airflowの基礎を学ぶハンズオンワークショップ
hankehly
0
200
システム/データ品質保証のための Airflow 活用法
hankehly
0
490
海外の記事からコードレビューのBest Practiceを集めてみました
hankehly
0
830
Other Decks in Programming
See All in Programming
Discord Bot with AI -for English learners-
xin9le
0
110
Jakarta EE meets AI
ivargrimstad
0
920
聞き手から登壇者へ: RubyKaigi2024 LTでの初挑戦が 教えてくれた、可能性の星
mikik0
1
140
MoQとか勉強会#2 発表資料
yuki_uchida
1
120
Modular Monolith Monorepo ~シンプルさを保ちながらmonorepoのメリットを最大化する~
yuisakamoto
10
3.7k
競技プログラミングで 基礎体力を身につけよう / You can get basic skills through competitive programming
mdstoy
0
130
14 Years of iOS: Lessons and Key Points
seyfoyun
0
390
Develop iOS apps with Neovim / vimconf_2024
uhooi
1
120
かんたんデザイン編集やってみた~「完全に理解した」までの道のり~
morit4ryo
1
110
AWS Lambdaから始まった Serverlessの「熱」とキャリアパス / It started with AWS Lambda Serverless “fever” and career path
seike460
PRO
1
410
CSC509 Lecture 13
javiergs
PRO
0
140
似たもの同士のPerlとPHP
uzulla
1
110
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Music & Morning Musume
bryan
46
6.2k
Site-Speed That Sticks
csswizardry
0
90
Automating Front-end Workflow
addyosmani
1366
200k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Git: the NoSQL Database
bkeepers
PRO
427
64k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
For a Future-Friendly Web
brad_frost
175
9.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
247
1.3M
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Code Reviewing Like a Champion
maltzj
520
39k
Transcript
Celeryの紹介と 本番運用のTips 2023/08/23 (水)
よろしくお願いします • Hank Ehly(ハンク・イーリー) • Slalom株式会社(スラロム) • Data & Analytics
シニアコンサルタント • https://hankehly.com • https://qiita.com/hankehly • https://github.com/hankehly • https://medium.com/@hankehly • https://www.twitter.com/hankehly • https://www.linkedin.com/in/hankehly
アジェンダ 1. Celeryの What・Why・Where・How 2. 本番運用の Tips
CeleryのWhat・Why・Where・How
• PythonのタスクキューのOSSフレームワーク • オープンソース(★22k、1,000以上のコントリビュータ、人気) What is Celery Celeryクライアント Celeryブローカー Celeryワーカー(複数可能)
他もある…
What is Celery (contd.) 非同期的に行われる
Why use Celery 計算・レポート出力
Why use Celery 計算・レポート出力
Why use Celery 計算・レポート出力
Why use Celery (contd.) ウェブサーバーの状況 ウェブサーバー に仕事させる時 Celeryに仕事 を委託する時 レスポンス時間
• ウェブサーバーにたくさん仕事さ せると、他のリクエストへの応答 が遅くなり、CPU/メモリー使用 率が高くなる Why use Celery (contd.) ウェブサーバーの状況
ウェブサーバー に仕事させる時 Celeryに仕事 を委託する時 レスポンス時間
• ウェブサーバーにたくさん仕事さ せると、他のリクエストへの応答 が遅くなり、CPU/メモリー使用 率が高くなる • Celeryワーカーに仕事を渡すと、 ウェブサーバーのリソースを節約 できて、応答を早くすることができ る
Why use Celery (contd.) ウェブサーバーの状況 ウェブサーバー に仕事させる時 Celeryに仕事 を委託する時 レスポンス時間
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
Where use Celery Eメール送信 MLモデル 予測処理 計算処理 →レポート出力 ポーリング処理 (定期的な状況確認)
Celeryが使えるワークロード MLモデル学習 →S3保存
How to use Celery 1. Install from celery import Celery
app = Celery('tasks', broker='redis://...') @app.task def add(x, y): return x + y pip install celery 2. アプリケーション定義 Celeryクライアント Celeryブローカー Celeryワーカー(複数可能) 例えば…
How to use Celery 3. ワーカーを立ち上げる celery -A tasks worker
from tasks import add >>> result = add.delay(4, 4) # 呼び出す >>> result.get() # 終わるまで待つ 4. タスクを呼び出す Celeryクライアント Celeryブローカー Celeryワーカー(複数可能) 例えば… ※複数のワーカーを使う場合は環境ごとに実行
本番運用のTips
1. ヘルスチェックは「ping」コマンドを使おう celery -A myapp inspect ping --destination celery@${HOSTNAME} 設定項目
設定値 interval 30 timeout 15 startPeriod 10 retries 5 ヘルスチェックの実行間隔 (ゆるめな設定がおすすめ)
2. 回復可能なエラーが起きたら再実行しよう
2. 回復可能なエラーが起きたら再実行しよう
3. ブローカーの選定 評価ポイント Redis RabbitMQ SQS リモートコマンド (pingなど) ◯ ◯
X Taskの結果保存ができ る ◯ △ X メッセージを送れなかっ たら、どうなる? △ 再配信されない ◯ 再配信される ◯ 再配信される ヘルスチェックどうする?? データロスが(より) 起きやすい
4. モニタリングツールを入れよう flowerはCeleryワーカーの健 康状態を監視するツール Celeryワーカー・実行中のタス クの状況を可視化 デバッグ・パフォーマンスチュー ニングに役立つ コンテナイメージ・バイナリのデ プロイ方法はブログ記事まで
…→ (flowerの管理画面)
5. Spotインスタンスの中断対策 @app.task def not_atomic_not_idempotent_task(): delete_rows() insert_rows() now = int(time.time())
create_file(name="backup-{now}.csv") @app.task def atomic_and_idempotent_task(filename): with transaction.atomic(): delete_rows() insert_rows() create_file(name=filename) コケたらシステムは変な状態のまま (リトライできない) コケても何度でもリトライできる! 1. タスクを安全にリトライできるように実装する(アトミック・冪等である)
5. Spotインスタンスの中断対策 @app.task def not_atomic_not_idempotent_task(): delete_rows() insert_rows() now = int(time.time())
create_file(name="backup-{now}.csv") @app.task def atomic_and_idempotent_task(filename): with transaction.atomic(): delete_rows() insert_rows() create_file(name=filename) コケたらシステムは変な状態のまま (リトライできない) コケても何度でもリトライできる! 1. タスクを安全にリトライできるように実装する(アトミック・冪等である) 2. 自動再スケジューリングの必須設定 task_acks_late True task_reject_on_worker_lost True タスク終了後にAckする Celeryワーカーが異常終了し たら、タスク再実行してね
5. Spotインスタンスの中断対策 3. 目指すべきタスクの実行時間は …(ブログ記事までお願いします!)
ご清聴ありがとうございます • Hank Ehly(ハンク・イーリー) • Slalom株式会社(スラロム) • Data & Analytics
シニアコンサルタント • https://hankehly.com • https://qiita.com/hankehly • https://github.com/hankehly • https://medium.com/@hankehly • https://www.twitter.com/hankehly • https://www.linkedin.com/in/hankehly 他のTipsはここ