Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【Ottertune】MLでDBを最適化するツールの紹介
Search
Hank Ehly
August 25, 2022
Technology
1
1.1k
【Ottertune】MLでDBを最適化するツールの紹介
Hank Ehly
August 25, 2022
Tweet
Share
More Decks by Hank Ehly
See All by Hank Ehly
Fivetranでデータ移動を自動化する
hankehly
0
610
Celeryの紹介と本番運用のTips
hankehly
0
1.1k
ChatGPTを活用した 便利ツールの紹介
hankehly
1
1.3k
Efficient Energy Analytics with Airflow, Spark, and MLFlow
hankehly
0
360
Deferrable Operators入門
hankehly
0
690
【初心者/ハンズオン】Dockerコンテナの基礎知識
hankehly
0
560
Compositeパターン: オブジェクトの階層関係をエレガントに表現する方法
hankehly
0
320
10/29 Airflowの基礎を学ぶハンズオンワークショップ
hankehly
0
280
システム/データ品質保証のための Airflow 活用法
hankehly
0
630
Other Decks in Technology
See All in Technology
技術選定、下から見るか?横から見るか?
masakiokuda
0
180
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
7
1.1k
迷わない!AI×MCP連携のリファレンスアーキテクチャ完全ガイド
cdataj
0
250
わが10年の叡智をぶつけたカオスなクラウドインフラが、なくなるということ。
sogaoh
PRO
1
270
Digitization部 紹介資料
sansan33
PRO
1
6.4k
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
Introduction to Bill One Development Engineer
sansan33
PRO
0
340
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
4.4k
RALGO : AIを組織に組み込む方法 -アルゴリズム中心組織設計- #RSGT2026 / RALGO: How to Integrate AI into an Organization – Algorithm-Centric Organizational Design
kyonmm
PRO
3
750
コールドスタンバイ構成でCDは可能か
hiramax
0
130
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
Featured
See All Featured
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
We Have a Design System, Now What?
morganepeng
54
8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Discover your Explorer Soul
emna__ayadi
2
1k
Mobile First: as difficult as doing things right
swwweet
225
10k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
230
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
34
How to build a perfect <img>
jonoalderson
1
4.8k
Transcript
【Ottertune】MLでDBを最適化する ツールの紹介
自己紹介 • Hank Ehly (ハンク イーリー) • ENECHANGE株式会社 • qiita.com/hankehly
• github.com/hankehly • connpass.com/user/hankehly
アジェンダ 1. DBチューニングの問題点 2. OtterTuneとは 3. 営業とのQ&A
AWS RDSとは • マネージド PostgreSQL、MySQL、... • バージョン更新 / バックアップ等 自動化される
• デフォルトパラメータ • DBの使われ方に最適化されていない
DBチューニングの問題点 • RDBの費用を抑えて性能を最適化したいよね? (A) PostgreSQLの内部の専門的な知識 (B) 試行錯誤でパラメータ変更を繰り返し、最適化されるまで、パフォーマンスへの 影響を検証する時間 (私はどちらも持っていない) •
本来より高いクラウドコストを支払っていて、低いパフォーマンスしか出せていない
OtterTuneとは AWS の RDS と連携し、PostgreSQL と MySQL の設定項目を機械学習で最適化する SaaS プロダクト
1. 接続 • OtterTuneアカウント作成 • Agentをデプロイする 2. メトリック取得 • DB のハードウェア、パラメータ、メトリクス情報を 定期的に取得する • データやクエリーを見ない 3. 最適化 • ユーザーが設定した目標に向けて、 DB の設定を機械学習で最適化していく
①今この設定だよ ②多分これに変えたら パフォーマンス上がるよ ③どうする?
営業とのQ&A 1. どんな情報を取得するか • 数値、カウンター、レイテンシー情報 • PostgreSQL Statistics Collector •
CloudWatchメトリック(CPU使用率など) • クエリーの内容/スキーマは取得されません 2. RDSとどう接続するか • Agentをデプロイする(Fargate) • 公式 CloudFormation / Terraform
module "ottertune-iam" { source = "ottertune/ottertune-iam/aws" version = "0.0.6" external_id
= "***" } (Terraform)
営業とのQ&A 3. 設定変更によるダウンタイムはあるか • 設定変更によるダウンタイムは今まで発生したことがないそうです • 変更すると再起動が必要な設定はあるけど、事前に分かるもののみ 4. 日本語対応(ダッシュボード /
サポート等) ない 5. 設定変更は自動なのか、人がやるのか • どちらも対応している • 完全に自動化できる • 人間が変更内容を見てボタンクリックで適用することもできる(human in the loop と呼ぶ)
営業とのQ&A 6. 設定変更はどの頻度で行われるか • 調整できるけど、24時間に1回が推奨される • 大体20回目のイテレーションで、パフォーマンスチューニングがMAXに到達する
営業とのQ&A 7. どのくらいのパフォーマンス向上が期待できるか ワークロードによるけど、デフォルトの RDS 設定を使っている場合 5% 〜 15% は期待
できる
営業とのQ&A 8. PostgreSQL のバージョン変更したらどうなるか • 何もなかったように、新しいメトリック/設定項目を考慮範囲に含められるだけ • OtterTuneのサービスが途切れることはない 9. 設定変更によってパフォーマンスが下がったことはあるか?
• あるけど、最初の方だけで、ノイズに近い • 継続的な設定調整でパフォーマンスがだんだん悪くなることはない 10. でもお高いでしょ? • 1 db = $0 • 〜5 db = $450/月 • https://ottertune.com/pricing 11. 検証環境で学習させて本番環境に適用することは? • 環境によってワークロードが違うので、検証環境で学習させて、本番環境に変更を展開することはあまり意味がない
営業とのQ&A 12. どのDBがサポートされるか
13. どのパラメータを調整するか • autovacuum_vacuum_cost_delay • autovacuum_vacuum_cost_limit • autovacuum_vacuum_scale_factor • autovacuum_vacuum_threshold
• bgwriter_delay • bgwriter_lru_maxpages • bgwriter_lru_multiplier • checkpoint_completion_target • 等々 営業とのQ&A
ご清聴ありがとうございます