Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マツコの知らない「数学」の世界
Search
h.crane
December 26, 2019
Technology
0
340
マツコの知らない「数学」の世界
マツコの知らない「数学」の世界
エンジニアとして知っておきたい計算量O(n)のお話
h.crane
December 26, 2019
Tweet
Share
More Decks by h.crane
See All by h.crane
Getting started with controlling LEGO using Swift
hcrane
1
1k
Swift 5.9 と C++ の互換性
hcrane
1
640
Live on iOSDC2023
hcrane
4
1.3k
自販機で1000円を使い切りたいんじゃ!
hcrane
0
130
Vision.framework - 商品画像からのテキスト検出と並列化実装への試み
hcrane
1
710
DevRel/Japan 2023 - 1つの事業部だけで行う DevRel とは
hcrane
0
970
R2-D2をiOSで動かす
hcrane
2
2.8k
iOSDC2022 - SwiftUI in UIKit で開発する世界
hcrane
6
6.8k
iOSDC2022 - iPadOSDC Japan 2022
hcrane
2
3.9k
Other Decks in Technology
See All in Technology
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!座学①
siyuanzh09
0
110
AWS re:Invent 2024 re:Cap Taipei (for Developer): New Launches that facilitate Developer Workflow and Continuous Innovation
dwchiang
0
160
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
1
200
2025年のARグラスの潮流
kotauchisunsun
0
790
re:Invent 2024のふりかえり
beli68
0
110
AWS re:Invent 2024 recap in 20min / JAWSUG 千葉 2025.1.14
shimy
1
100
チームが毎日小さな変化と適応を続けたら1年間でスケール可能なアジャイルチームができた話 / Building a Scalable Agile Team
kakehashi
2
220
デジタルアイデンティティ人材育成推進ワーキンググループ 翻訳サブワーキンググループ 活動報告 / 20250114-OIDF-J-EduWG-TranslationSWG
oidfj
0
420
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.3k
When Windows Meets Kubernetes…
pichuang
0
300
JuliaTokaiとJuliaLangJaの紹介 for NGK2025S
antimon2
1
110
Formal Development of Operating Systems in Rust
riru
1
420
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
170
Documentation Writing (for coders)
carmenintech
67
4.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Transcript
マツコの知らない「数学」の世界 〜 エンジニアとして知っておきたい計算量O(n)のお話 〜 Hiromu Tsuruta
こんな記事がバズってました
動的計画法によるDVDのディスク分割の改善
何でバズってるの?
アルゴリズムを使って実際に業務改善をしている!
・家族の「写真や動画」をDVDにして注文できる機能がある ・「写真や動画」は1枚に収まらないので複数のディスクに分割する ⇨ 「月ごとに分けて各ディスクに入れていく」というアルゴリズム 【前提】
1月の思い出 データベース 2月の思い出 3月の思い出 12月の思い出 ・・・・・ 12枚 【現状】
ディスクの枚数をもっと減らせないのか ⇨ ユーザーから問い合わせが寄せられていた 【課題】
どうやって減らす?
月ごとではなく最適化して入れる!
1月の思い出 データベース 2月の思い出 3月の思い出 12月の思い出 ・・・・・ 12枚よりは少ない 【解決例】
最適化する = データを分割する
ディスクの枚数課題を解決!
ではありません
ただ、分割すれば良いと言うものではない!
なんで?
データ分割の計算量を意識する必要がある
None
ユーザー サーバー ① アルバムの注文 ④ 注文枚数を表示 サーバー/データ ② 枚数の計算を実行 ③
計算結果を返す 〜 注文フロー 〜
計算が遅いとユーザーの画面反映も遅れる
UXの低下・機会損失
ユーザー サーバー ① アルバムの注文 ④ 注文枚数を表示 サーバー/データ ② 枚数の計算を実行 ③
計算結果を返す 〜 注文フロー 〜 この部分をなんとかしたい!
計算量を抑えました
O(MN²) から O(MN log N) まで減らし 最終的に O(NM²) までになりました (1
≦ N ≦ 10⁵, 1 ≦ M ≦ 50)
ん?
O とは?
ランダウの記号 ギリシア文字の O(オミクロン)を用いて表される 大文字をビッグオー、小文字をスモールオーと呼んだりもする 数学においてはオーダーという呼び方をする 計算量を大雑把に評価する(見積もる)際に使用する example O(n) :オーダーのエヌ O(log
n) :オーダーのログエヌ
具体例を見てみよう!
Example.1 「世界のナベアツ」
None
ナベアツは線形探索しているだけ!
線形探索とは?
・検索アルゴリズムの1つ ・リストや配列に入ったデータの検索を行う ・先頭から順に比較を行い、見つかれば終了する
「世界のナベアツ」パターン - 3の倍数 or 3が付くなら true - それ以外は false を必ず1回ずつ確認を行っている
and 40までしか探索しない
「世界のナベアツ」= O(40)
「世界のナベアツ」が 100 まで探索する場合は?
「世界のナベアツ」= O(100)
「世界のナベアツ」が n まで探索する場合は?
「世界のナベアツ」= O(n)
話を戻すと、、 結局、計算量は減ってるの? (ここから普通に数学なのでつまらなかったらすいません)
O(MN²) ⇨ O(MN log N) ⇨ O(NM²) 先の話では、、 計算量を以下の順番で減らした O(NM²)
≦ O(MN log N) ≦ O(MN²) (1 ≦ N ≦ 10⁵, 1 ≦ M ≦ 50)
全然わからん、、から 具体的な数字に落とし込んでみよう!
取りうる最大値を代入する
1 ≦ N ≦ 10⁵ 1 ≦ M ≦ 50
1 ≦ M ≦ 50 1 ≦ M ≦ 10
* 5 1 ≦ M ≦ 10 * 5 ≦ 10 * 10 Mの範囲をNに合わせて拡張する 上記のことから 1 ≦ M ≦ 10²
O(NM²) ≦ O(MN log N) ≦ O(MN²) O(MN²) ≦ O(10²
* (10⁵)²) ≦ O(10² * 10¹⁰) ≦ O(10¹²) O(MN log N) ≦ O(10² * 10⁵ * log10⁵) ≦ O(10⁷ * 10⁵) ≦ O(10¹²) O(NM²) ≦ O(10⁵ * (10²)²) ≦ O(10⁵ * 10⁴) ≦ O(10⁹) N = 10⁵, M = 10²
O(NM²) ≦ O(MN log N) ≦ O(MN²) O(10⁹) ≦ O(10¹²)
≦ O(10¹²) 10⁹ ≦ 10¹² ≦ 10¹²
確かに計算上は計算量が小さくなっている!
どうやって小さくしているの? というのはバズっていた記事にある アルゴリズムを読んでください (この資料はあくまでもO(オーダー)について説明に焦点を当てています)
fin