Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Try Cats
Search
fuzyco
January 11, 2018
Technology
0
570
Try Cats
Scalaの関数型ライブラリCatsをやってみた話です。
fuzyco
January 11, 2018
Tweet
Share
More Decks by fuzyco
See All by fuzyco
Functional Error&Retry Handling
hiroki6
2
560
Extensible Effects: beyond the Monad Transformers
hiroki6
1
800
High Performance Scala/high_performance_scala
hiroki6
4
4.1k
並行四方山話/tales_of_concurrency
hiroki6
0
110
Scalaでの並行・並列処理戦略/strategy-for-concurrency-and-parallel-by-scala
hiroki6
9
3k
Monad Error with Cats/monad-error-with-cats
hiroki6
0
600
scala_multi_thread.pdf
hiroki6
0
330
GAEを用いたBQ Load戦略/gae_bq_load_strategy
hiroki6
2
1.8k
Extensible Effects with Scala/eff-with-scala
hiroki6
0
1k
Other Decks in Technology
See All in Technology
MCPで変わる Amebaデザインシステム「Spindle」の開発
spindle
PRO
3
2.3k
まだ間に合う! StrandsとBedrock AgentCoreでAIエージェント構築に入門しよう
minorun365
PRO
11
750
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
15
7.5k
JavaScript 研修
recruitengineers
PRO
6
1.4k
衝突して強くなる! BLUE GIANTと アジャイルチームの共通点とは ― いきいきと活気に満ちたグルーヴあるチームを作るコツ ― / BLUE GIANT and Agile Teams
naitosatoshi
0
290
AIエージェントの活用に重要な「MCP (Model Context Protocol)」とは何か
masayamoriofficial
0
250
ライブサービスゲームQAのパフォーマンス検証による品質改善の取り組み
gree_tech
PRO
0
440
カミナシ社の『ID管理基盤』製品内製 - その意思決定背景と2年間の進化 #AWSUnicornDay / Kaminashi ID - The Big Whys
kaminashi
3
730
制約理論(ToC)入門
recruitengineers
PRO
9
3.7k
データアナリストからアナリティクスエンジニアになった話
hiyokko_data
2
340
JuniorからSeniorまで: DevOpsエンジニアの成長ロードマップ
yuriemori
2
350
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
160
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
570
The Art of Programming - Codeland 2020
erikaheidi
55
13k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
A designer walks into a library…
pauljervisheath
207
24k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Building an army of robots
kneath
306
46k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Practical Orchestrator
shlominoach
190
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Transcript
5SZ$BUT
ΞδΣϯμ w $BUTͱ w $BUTಠࣗͷϞφυ w $BUTΛ௨ֶͯ͠Μͩ͜ͱ
$BUTͱ 4DBMB[ͷ෦྾ʹΑͬͯੜ·Εͨ ؔܕϓϩάϥϛϯά༻ͷ4DBMBϥΠϒϥϦ ɾࠒੜ ɾʹWϦϦʔε ɾݍ DBUFHPSZ ʹ༝དྷ ಡΜͩจݙ ɾೣ൪IUUQFFETJODPNIFSEJOHDBUTKB
ɾ4DBMB8JUI$BUT
$BUTͷಛ ɾؔܕϓϩάϥϛϯάΛ࣮ݱ͢ΔͨΊͷ ๛ͳܕΫϥεͷఏڙ ɾIBTLFMMʹ͍࣮ۙ &Rɺ4IPXͳͲ
$BUTWT4DBMB[ $BUT ɾ৽͍͠σʔλܕ ɾ࣮༻্ඞཁͳશͯͷ൚༻ؔͷ࣮ ΞυϗοΫଟ૬ੑɺUSBJU JNQMJDJU ೣ൪ΑΓҾ༻ 4DBMB[ ɾ৽͍͠σʔλܕ
ɾඪ४Ϋϥεͷ֦ு 0QUJPO0QT -JTU0QT ɾ࣮༻্ඞཁͳશͯͷ൚༻ؔͷ࣮ ΞυϗοΫଟ૬ੑɺUSBJU JNQMJDJU ಠश4DBMB[ΑΓҾ༻
$BUTWT4DBMB[ &JUIFSa 7BMJEBUFE7BMJEBUJPO 3FBEFS3FBEFS 4UBUF4UBUF 8SJUFS8SJUFS ɾ༻ҙ͞Ε͍ͯΔϝιου͕Ұ෦ҟͳΔ͕ɺ ಉ͡Α͏ͳσʔλܕ͕͋Δ
$BUTಠࣗͷϞφυ ɾ&WBM
&WBMϞφυ ධՁΛ੍ޚ͢Δσʔλܕ import cats.Eval // valͷΑ͏ʹఆٛ࣌ʹධՁ val x = Eval.now
{ println("Computing X") math.random } // Computing X // x: cats.Eval[Double] = Now(0.8724950064732552) // defͷΑ͏ʹৗʹධՁ val y = Eval.always { println("Computing Y") math.random } // y: cats.Eval[Double] = cats.Always@5212e1f5 // lazy valͷΑ͏ʹԆධՁ val z = Eval.later { println("Computing Z") math.random } // z: cats.Eval[Double] = cats.Later@33eda11
&WBMϞφυ ධՁΛ੍ޚ͢Δσʔλܕ x.value // first access // res9: Double =
0.8724950064732552 x.value // second access // res10: Double = 0.8724950064732552 y.value // first access // Computing Y // res11: Double = 0.8795680260041828 y.value // second access // Computing Y // res12: Double = 0.5640213059400854 z.value // first access // Computing Z // res13: Double = 0.5813583535421343 z.value // second access // res14: Double = 0.5813583535421343 import cats.Eval // valͷΑ͏ʹఆٛ࣌ʹධՁ val x = Eval.now { println("Computing X") math.random } // Computing X // x: cats.Eval[Double] = Now(0.8724950064732552) // defͷΑ͏ʹৗʹධՁ val y = Eval.always { println("Computing Y") math.random } // y: cats.Eval[Double] = cats.Always@5212e1f5 // lazy valͷΑ͏ʹԆධՁ val z = Eval.later { println("Computing Z") math.random } // z: cats.Eval[Double] = cats.Later@33eda11
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): BigInt = if(n == 1) n
else n * factorial(n - 1) factorial(50000) // ࣮ߦ ඌ࠶ؼͰͳ͍࠶ؼؔ
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): BigInt = if(n == 1) n
else n * factorial(n - 1) factorial(50000) // ࣮ߦ ඌ࠶ؼͰͳ͍࠶ؼؔ ελοΫΦʔόʔϑϩʔ͕ى͖Δ factorial(50000) // java.lang.StackOverflowError // ...
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { factorial(n - 1).map(_ * n) } factorial(50000).value // ࣮ߦ &WBMΛ༻͍ͨίʔυʹมߋ
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { factorial(n - 1).map(_ * n) } factorial(50000).value // ࣮ߦ &WBMΛ༻͍ͨίʔυʹมߋ factorial(50000).value // java.lang.StackOverflowError // ... ελοΫΦʔόʔϑϩʔ͕ى͖Δ
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { Eval.defer(factorial(n - 1).map(_ * n)) } factorial(50000).value // ࣮ߦ // res20: BigInt = //33473205095971448369154760940714864779127732…… &WBMEFGFSϝιουΛͬͯ͞ΒʹϦϑΝΫλϦϯά
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { Eval.defer(factorial(n - 1).map(_ * n)) } factorial(50000).value // ࣮ߦ // res20: BigInt = //33473205095971448369154760940714864779127732…… factorial(50000).value // res20: BigInt = //33473205095971448369154760940714864779127732…… &WBMEFGFSϝιουΛͬͯ͞ΒʹϦϑΝΫλϦϯά ਖ਼ৗऴྃ
&WBMʹΑΔ࠶ؼॲཧ &WBMEFGFSϝιουԿΛ͍ͯ͠Δͷ͔ʁ def defer[A](a: => Eval[A]): Eval[A] = new Eval.Defer[A](a
_) {} sealed abstract class Defer[A](val thunk: () => Eval[A]) extends Eval[A] { def memoize: Eval[A] = Memoize(this) def value: A = evaluate(this) } &WBM<">Λฦ͢ܭࢉΛԆ͍ͯ͠Δ τϥϯϙϦϯԽ͕ߦΘΕɺ͕ؔचͭͳ͗ ͰݺΕͳ͘ͳΔ
$BUTΛษڧֶͯͯ͠Μͩ͜ͱ ಡΜͩจݙ ɾೣ൪IUUQFFETJODPNIFSEJOHDBUTKB ɾ4DBMB8JUI$BUT ֶͼ ɾϞφυͬͯԿͳͷ͔ ɾ,MFJTMJɺ3FBEFSϞφυ ɾϞφυมࢠ
ϞφυͬͯԿͳͷ͔ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ ΧϥʔίοϓຊΑΓҾ༻
ϞφυͬͯԿͳͷ͔ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ ʁ ΧϥʔίοϓຊΑΓҾ༻
ϞφυͬͯԿͳͷ͔ ϞφυΛඥղ͘Ωʔϫʔυ ɾϑΝϯΫλʔ 'VODUPS ɾΞϓϦΧςΟϒϑΝϯΫλʔ "QQMJDBUJWF'VODUPS ͜ͷೋͭඞͣग़ͯ͘Δ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ
ʁ ΧϥʔίοϓຊΑΓҾ༻
Ϟφυ 'VODUPS"QQMZ "QQMJDBUJWF'VODUPS.POBE DBUTʹ͓͍ͯɺ࣍ͷॱͰਐԽ͍ͯ͘͠
'VODUPS -JTU 0QUJPOͳͲʹରͯ͠ɺ แ·Εͨʹରͯ͠ҾؔΛద༻͢ΔॲཧΛఏڙ͢ΔܕΫϥε List(1, 2, 3).map(_ * 2) //
List(2, 4, 6) Some(1).map(_ * 2) // Some(2) @typeclass trait Functor[F[_]] extends functor.Invariant[F] { self => def map[A, B](fa: F[A])(f: A => B): F[B] .... }
"QQMZ 'VODUPSΛ֦ுͯ͠ɺ/ݸͷ'VODUPSʹ/ҾؔΛ ద༻͢ΔॲཧΛఏڙ͢ΔܕΫϥε import cats.implicits._ // implicit defͰ҉తʹmap2, map3͕ద༻͞ΕΔ (Some(1),
Some(2)).mapN(_ + ) // Some(3) (Some(1), Some(2), Some(3)).mapN(_ * _ * _) // Some(6) (List("ha", "heh", "hmm"), List("?", "!", ".")) mapN {_ + _} // List(ha?, ha!, ha., heh?, heh!, heh., hmm?, hmm!, hmm.)
"QQMJDBUJWF'VODUPS "QQMJDBUJWF"QQMZʹ QVSFϝιου "'<"> ΛՃ͍ͯ͠ΔܕΫϥε ϓϦϛςΟϒΛ"QQMJDBUJWFܕʹมͯ͠ɺ ଞͷ"QQMJDBUJWFͱ߹Ͱ͖Δɹ DBUTͷ7BMJEBUFEBQQMJDBUJWFGVODUPSΛܗ͢Δ 1.pure[Option] //
Some(1) // શͯͷΠϕϯτΛݕূ্ͨ͠Ͱɺ߹Λߦ͏ val result = (valid[String, String]("event 1 ok") |@| invalid[String, String]("event 2 failed!") |@| invalid[String, String]("event 3 failed!")) map {_ + _ + _} // result: cats.data.Validated[String,String] = Invalid(event 2 failed!event 3 failed!) DPNQPTF G QVSF G DPNQPTF QVSF G G QVSFಉҰΛຬͨ͢
.POBE "QQMJDBUJWF'VODUPSෳͷ'VODUPSΛѻ͏͜ͱ͕Ͱ͖͕ͨɺ લͷ'VODUPSʹґଘ͢ΔॲཧΛॻ͚ͳ͍ɻ def hogeOption(a: Int): Option[Int] = Some(a) hogeOption(1).flatMap(a
=> hogeOption(a).map(b => a+b)) // Some(2) for { a <- hogeOption(1) b <- hogeOption(a) } yield (a + b) // Some(2) .POBEલͷʹґଘ͢ΔॲཧΛఏڙ͢ΔܕΫϥε /POFqBU.BQ G qBU.BQ H /POFqBU.BQ BG B qBU.BQ H qBU.BQ݁߹Λຬͨ͢
Ϟφυ·ͱΊ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ DPNQPTF G QVSF G DPNQPTF QVSF G
G ಉҰ /POFqBU.BQ G qBU.BQ H /POFqBU.BQ BG B qBU.BQ H ݁߹ ʹแ·Εͨͷʹରͯ͠ɺؔͷ࿈Λ࣮ߦͰ͖Δ