Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Try Cats
Search
fuzyco
January 11, 2018
Technology
0
580
Try Cats
Scalaの関数型ライブラリCatsをやってみた話です。
fuzyco
January 11, 2018
Tweet
Share
More Decks by fuzyco
See All by fuzyco
Functional Error&Retry Handling
hiroki6
2
570
Extensible Effects: beyond the Monad Transformers
hiroki6
1
810
High Performance Scala/high_performance_scala
hiroki6
4
4.2k
並行四方山話/tales_of_concurrency
hiroki6
0
120
Scalaでの並行・並列処理戦略/strategy-for-concurrency-and-parallel-by-scala
hiroki6
9
3.1k
Monad Error with Cats/monad-error-with-cats
hiroki6
0
620
scala_multi_thread.pdf
hiroki6
0
340
GAEを用いたBQ Load戦略/gae_bq_load_strategy
hiroki6
2
1.9k
Extensible Effects with Scala/eff-with-scala
hiroki6
0
1k
Other Decks in Technology
See All in Technology
アジャイル社内普及ご近所さんマップを作ろう / Let's create an agile neighborhood map
psj59129
1
140
巨大モノリスのリプレイス──機能整理とハイブリッドアーキテクチャで挑んだ再構築戦略
zozotech
PRO
0
270
Kubernetesと共にふりかえる! エンタープライズシステムのインフラ設計・テストの進め方大全
daitak
0
440
TypeScript 6.0で非推奨化されるオプションたち
uhyo
14
4.8k
AS59105におけるFreeBSD EtherIPの運用と課題
x86taka
0
260
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
2.4k
個人から巡るAI疲れと組織としてできること - AI疲れをふっとばせ。エンジニアのAI疲れ治療法 ショートセッション -
kikuchikakeru
4
1.8k
大規模プロダクトで実践するAI活用の仕組みづくり
k1tikurisu
5
1.8k
re:Inventにおける製造業のこれまでとこれから
hamadakoji
0
290
ローカルLLM基礎知識 / local LLM basics 2025
kishida
23
6.5k
IPv6-mostly field report from RubyKaigi 2026
sorah
0
130
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
490
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
57
6.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Music & Morning Musume
bryan
46
7k
Unsuck your backbone
ammeep
671
58k
Embracing the Ebb and Flow
colly
88
4.9k
Optimizing for Happiness
mojombo
379
70k
A designer walks into a library…
pauljervisheath
210
24k
Side Projects
sachag
455
43k
Become a Pro
speakerdeck
PRO
29
5.6k
Typedesign – Prime Four
hannesfritz
42
2.9k
Raft: Consensus for Rubyists
vanstee
140
7.2k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Transcript
5SZ$BUT
ΞδΣϯμ w $BUTͱ w $BUTಠࣗͷϞφυ w $BUTΛ௨ֶͯ͠Μͩ͜ͱ
$BUTͱ 4DBMB[ͷ෦྾ʹΑͬͯੜ·Εͨ ؔܕϓϩάϥϛϯά༻ͷ4DBMBϥΠϒϥϦ ɾࠒੜ ɾʹWϦϦʔε ɾݍ DBUFHPSZ ʹ༝དྷ ಡΜͩจݙ ɾೣ൪IUUQFFETJODPNIFSEJOHDBUTKB
ɾ4DBMB8JUI$BUT
$BUTͷಛ ɾؔܕϓϩάϥϛϯάΛ࣮ݱ͢ΔͨΊͷ ๛ͳܕΫϥεͷఏڙ ɾIBTLFMMʹ͍࣮ۙ &Rɺ4IPXͳͲ
$BUTWT4DBMB[ $BUT ɾ৽͍͠σʔλܕ ɾ࣮༻্ඞཁͳશͯͷ൚༻ؔͷ࣮ ΞυϗοΫଟ૬ੑɺUSBJU JNQMJDJU ೣ൪ΑΓҾ༻ 4DBMB[ ɾ৽͍͠σʔλܕ
ɾඪ४Ϋϥεͷ֦ு 0QUJPO0QT -JTU0QT ɾ࣮༻্ඞཁͳશͯͷ൚༻ؔͷ࣮ ΞυϗοΫଟ૬ੑɺUSBJU JNQMJDJU ಠश4DBMB[ΑΓҾ༻
$BUTWT4DBMB[ &JUIFSa 7BMJEBUFE7BMJEBUJPO 3FBEFS3FBEFS 4UBUF4UBUF 8SJUFS8SJUFS ɾ༻ҙ͞Ε͍ͯΔϝιου͕Ұ෦ҟͳΔ͕ɺ ಉ͡Α͏ͳσʔλܕ͕͋Δ
$BUTಠࣗͷϞφυ ɾ&WBM
&WBMϞφυ ධՁΛ੍ޚ͢Δσʔλܕ import cats.Eval // valͷΑ͏ʹఆٛ࣌ʹධՁ val x = Eval.now
{ println("Computing X") math.random } // Computing X // x: cats.Eval[Double] = Now(0.8724950064732552) // defͷΑ͏ʹৗʹධՁ val y = Eval.always { println("Computing Y") math.random } // y: cats.Eval[Double] = cats.Always@5212e1f5 // lazy valͷΑ͏ʹԆධՁ val z = Eval.later { println("Computing Z") math.random } // z: cats.Eval[Double] = cats.Later@33eda11
&WBMϞφυ ධՁΛ੍ޚ͢Δσʔλܕ x.value // first access // res9: Double =
0.8724950064732552 x.value // second access // res10: Double = 0.8724950064732552 y.value // first access // Computing Y // res11: Double = 0.8795680260041828 y.value // second access // Computing Y // res12: Double = 0.5640213059400854 z.value // first access // Computing Z // res13: Double = 0.5813583535421343 z.value // second access // res14: Double = 0.5813583535421343 import cats.Eval // valͷΑ͏ʹఆٛ࣌ʹධՁ val x = Eval.now { println("Computing X") math.random } // Computing X // x: cats.Eval[Double] = Now(0.8724950064732552) // defͷΑ͏ʹৗʹධՁ val y = Eval.always { println("Computing Y") math.random } // y: cats.Eval[Double] = cats.Always@5212e1f5 // lazy valͷΑ͏ʹԆධՁ val z = Eval.later { println("Computing Z") math.random } // z: cats.Eval[Double] = cats.Later@33eda11
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): BigInt = if(n == 1) n
else n * factorial(n - 1) factorial(50000) // ࣮ߦ ඌ࠶ؼͰͳ͍࠶ؼؔ
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): BigInt = if(n == 1) n
else n * factorial(n - 1) factorial(50000) // ࣮ߦ ඌ࠶ؼͰͳ͍࠶ؼؔ ελοΫΦʔόʔϑϩʔ͕ى͖Δ factorial(50000) // java.lang.StackOverflowError // ...
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { factorial(n - 1).map(_ * n) } factorial(50000).value // ࣮ߦ &WBMΛ༻͍ͨίʔυʹมߋ
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { factorial(n - 1).map(_ * n) } factorial(50000).value // ࣮ߦ &WBMΛ༻͍ͨίʔυʹมߋ factorial(50000).value // java.lang.StackOverflowError // ... ελοΫΦʔόʔϑϩʔ͕ى͖Δ
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { Eval.defer(factorial(n - 1).map(_ * n)) } factorial(50000).value // ࣮ߦ // res20: BigInt = //33473205095971448369154760940714864779127732…… &WBMEFGFSϝιουΛͬͯ͞ΒʹϦϑΝΫλϦϯά
&WBMʹΑΔ࠶ؼॲཧ def factorial(n: BigInt): Eval[BigInt] = if(n == 1) {
Eval.now(n) } else { Eval.defer(factorial(n - 1).map(_ * n)) } factorial(50000).value // ࣮ߦ // res20: BigInt = //33473205095971448369154760940714864779127732…… factorial(50000).value // res20: BigInt = //33473205095971448369154760940714864779127732…… &WBMEFGFSϝιουΛͬͯ͞ΒʹϦϑΝΫλϦϯά ਖ਼ৗऴྃ
&WBMʹΑΔ࠶ؼॲཧ &WBMEFGFSϝιουԿΛ͍ͯ͠Δͷ͔ʁ def defer[A](a: => Eval[A]): Eval[A] = new Eval.Defer[A](a
_) {} sealed abstract class Defer[A](val thunk: () => Eval[A]) extends Eval[A] { def memoize: Eval[A] = Memoize(this) def value: A = evaluate(this) } &WBM<">Λฦ͢ܭࢉΛԆ͍ͯ͠Δ τϥϯϙϦϯԽ͕ߦΘΕɺ͕ؔचͭͳ͗ ͰݺΕͳ͘ͳΔ
$BUTΛษڧֶͯͯ͠Μͩ͜ͱ ಡΜͩจݙ ɾೣ൪IUUQFFETJODPNIFSEJOHDBUTKB ɾ4DBMB8JUI$BUT ֶͼ ɾϞφυͬͯԿͳͷ͔ ɾ,MFJTMJɺ3FBEFSϞφυ ɾϞφυมࢠ
ϞφυͬͯԿͳͷ͔ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ ΧϥʔίοϓຊΑΓҾ༻
ϞφυͬͯԿͳͷ͔ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ ʁ ΧϥʔίοϓຊΑΓҾ༻
ϞφυͬͯԿͳͷ͔ ϞφυΛඥղ͘Ωʔϫʔυ ɾϑΝϯΫλʔ 'VODUPS ɾΞϓϦΧςΟϒϑΝϯΫλʔ "QQMJDBUJWF'VODUPS ͜ͷೋͭඞͣग़ͯ͘Δ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ
ʁ ΧϥʔίοϓຊΑΓҾ༻
Ϟφυ 'VODUPS"QQMZ "QQMJDBUJWF'VODUPS.POBE DBUTʹ͓͍ͯɺ࣍ͷॱͰਐԽ͍ͯ͘͠
'VODUPS -JTU 0QUJPOͳͲʹରͯ͠ɺ แ·Εͨʹରͯ͠ҾؔΛద༻͢ΔॲཧΛఏڙ͢ΔܕΫϥε List(1, 2, 3).map(_ * 2) //
List(2, 4, 6) Some(1).map(_ * 2) // Some(2) @typeclass trait Functor[F[_]] extends functor.Invariant[F] { self => def map[A, B](fa: F[A])(f: A => B): F[B] .... }
"QQMZ 'VODUPSΛ֦ுͯ͠ɺ/ݸͷ'VODUPSʹ/ҾؔΛ ద༻͢ΔॲཧΛఏڙ͢ΔܕΫϥε import cats.implicits._ // implicit defͰ҉తʹmap2, map3͕ద༻͞ΕΔ (Some(1),
Some(2)).mapN(_ + ) // Some(3) (Some(1), Some(2), Some(3)).mapN(_ * _ * _) // Some(6) (List("ha", "heh", "hmm"), List("?", "!", ".")) mapN {_ + _} // List(ha?, ha!, ha., heh?, heh!, heh., hmm?, hmm!, hmm.)
"QQMJDBUJWF'VODUPS "QQMJDBUJWF"QQMZʹ QVSFϝιου "'<"> ΛՃ͍ͯ͠ΔܕΫϥε ϓϦϛςΟϒΛ"QQMJDBUJWFܕʹมͯ͠ɺ ଞͷ"QQMJDBUJWFͱ߹Ͱ͖Δɹ DBUTͷ7BMJEBUFEBQQMJDBUJWFGVODUPSΛܗ͢Δ 1.pure[Option] //
Some(1) // શͯͷΠϕϯτΛݕূ্ͨ͠Ͱɺ߹Λߦ͏ val result = (valid[String, String]("event 1 ok") |@| invalid[String, String]("event 2 failed!") |@| invalid[String, String]("event 3 failed!")) map {_ + _ + _} // result: cats.data.Validated[String,String] = Invalid(event 2 failed!event 3 failed!) DPNQPTF G QVSF G DPNQPTF QVSF G G QVSFಉҰΛຬͨ͢
.POBE "QQMJDBUJWF'VODUPSෳͷ'VODUPSΛѻ͏͜ͱ͕Ͱ͖͕ͨɺ લͷ'VODUPSʹґଘ͢ΔॲཧΛॻ͚ͳ͍ɻ def hogeOption(a: Int): Option[Int] = Some(a) hogeOption(1).flatMap(a
=> hogeOption(a).map(b => a+b)) // Some(2) for { a <- hogeOption(1) b <- hogeOption(a) } yield (a + b) // Some(2) .POBEલͷʹґଘ͢ΔॲཧΛఏڙ͢ΔܕΫϥε /POFqBU.BQ G qBU.BQ H /POFqBU.BQ BG B qBU.BQ H qBU.BQ݁߹Λຬͨ͢
Ϟφυ·ͱΊ Ϟφυͱɺ݁߹ͱಉҰΛຬͨ͢࠷খݶͷ ϞφυίϯϏωʔλͷू·Γͷ͍ͣΕ͔Λ࣮ͨ͠ͷͰ͋Δɻ DPNQPTF G QVSF G DPNQPTF QVSF G
G ಉҰ /POFqBU.BQ G qBU.BQ H /POFqBU.BQ BG B qBU.BQ H ݁߹ ʹแ·Εͨͷʹରͯ͠ɺؔͷ࿈Λ࣮ߦͰ͖Δ