Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自然言語による シェルコマンドラインチャー wanna の紹介
Search
hirokidaichi
April 05, 2023
Technology
0
2.5k
自然言語による シェルコマンドラインチャー wanna の紹介
hirokidaichi
April 05, 2023
Tweet
Share
More Decks by hirokidaichi
See All by hirokidaichi
エンジニアリング組織論〜不確実性に向き合う組織の現在と未来
hirokidaichi
1
120
大規模言語モデル時代の開発生産性
hirokidaichi
21
13k
内製化のコツとワナ
hirokidaichi
2
1.9k
心理的安全性とソフトウェア化する社会/ Psychological Safety and Software-based Society
hirokidaichi
40
12k
Power Theory of Software Architecture
hirokidaichi
21
7.7k
Cultural Capital Theory in Software Engineering
hirokidaichi
48
15k
エンジニアリング組織論への招待:第1章(プレゼン)
hirokidaichi
6
3.2k
エンジニアリング組織論への招待:第2章(プレゼン)
hirokidaichi
3
1.2k
2つのDXと技術的負債-YAPC Tokyo 2019
hirokidaichi
55
26k
Other Decks in Technology
See All in Technology
Zabbixチョットデキルとは!?
kujiraitakahiro
0
180
AI Agentを「期待通り」に動かすために:設計アプローチの模索と現在地
kworkdev
PRO
2
380
50人の組織でAIエージェントを使う文化を作るためには / How to Create a Culture of Using AI Agents in a 50-Person Organization
yuitosato
6
3.2k
試験は暗記より理解 〜効果的な試験勉強とその後への活かし方〜
fukazawashun
0
340
バックオフィス向け toB SaaS バクラクにおけるレコメンド技術活用 / recommender-systems-in-layerx-bakuraku
yuya4
2
280
アセスメントで紐解く、10Xのデータマネジメントの軌跡
10xinc
1
360
2025年春に見直したい、リソース最適化の基本
sogaoh
PRO
0
460
AIで進化するソフトウェアテスト:mablの最新生成AI機能でQAを加速!
mfunaki
0
110
大AI時代で輝くために今こそドメインにディープダイブしよう / Deep Dive into Domain in AI-Agent-Era
yuitosato
1
270
Langchain4j y Ollama - Integrando LLMs con programas Java @ Commit Conf 2025
deors
1
130
JPOUG Tech Talk #12 UNDO Tablespace Reintroduction
nori_shinoda
1
120
7,000名規模の 人材サービス企業における プロダクト戦略・戦術と課題 / Product strategy, tactics and challenges for a 7,000-employee staffing company
techtekt
0
260
Featured
See All Featured
BBQ
matthewcrist
88
9.6k
Writing Fast Ruby
sferik
628
61k
GitHub's CSS Performance
jonrohan
1030
460k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.2k
The Invisible Side of Design
smashingmag
299
50k
Speed Design
sergeychernyshev
29
880
Building an army of robots
kneath
304
45k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Automating Front-end Workflow
addyosmani
1369
200k
Transcript
自然言語による シェルコマンドラインチャー wanna の紹介 株式会社レクター 広木大地
広木 大地 1983年生まれ。筑波大学大学院を卒業後、2008年に新卒第1期として株式会社ミクシィに 入社。同社のアーキテクトとして、技術戦略から組織構築などに携わる。 同社メディア開発部長、開発部部長、サービス本部長執行役員を務めた後、2015年退社。 現在は、株式会社レクターを創業し、技術と経営をつなぐ技術組織のアドバイザリーとして、 多数の会社の経営支援を行っている。 著書『エンジニアリング組織論への招待~不確実性に向き合う思考と組織のリファクタング』 が第6回ブクログ大賞・ビジネス書部門大賞、翔泳社ITエンジニアに読んでほしい技術書大 賞2019・技術書大賞受賞。一般社団法人日本CTO協会理事。内閣官房、経産省、IPA、デ
ジタル庁などでDX/リスキリングに関する委員を歴任。 2022年9月、株式会社朝日新聞社社外CTO就任 2022年11月、株式会社グッドパッチ社外取締役就任 自己紹介
None
まずはデモをご覧ください。
None
wanna think / コマンドを考えるコマンド ソフトウェア開発のプロセス設計し、 AIと人間の役割を決めてステートマシンとして実装 生成 名前提案 概要生成と保存 反省とデバッグ
指示出し 実行 保存 追加指示 指示リセット 名前選択 これまでの 指示をまとめる レビュー 保存フェーズ 終了 Exit 問題があれば修正 LLM の仕事 人間の仕事
AIが提案し、人間が決める 自然言語を入力するのは意外とめんどくさい。だからできる限り ”意思決定”だけさせる。 LLM の仕事:実装したり提案したり 人間の仕事:目的の提供と意思決定
複数のNLPタスクを組み合わせたUX GPTの凄さはNLPの圧倒的な民主化。これまで使わなかったところにもふんだんに使う設計 ①ソースコード生成 ③実行結果の評価と デバッグ ②スクリプト名の 提案 ④概要文の生成 ⑤ユーザー言語の 推定
GPTのすごさはNLPの民主化 (こんなところにも使うの?がUXになる。)
スクリプトの生成プロンプト CoT:Chain of Thoughtを効かせるためにまず説明を求める。 CoT One Shot Example ユーザーの言語を入力から推定して、出力を縛る。
スクリプト名の提案プロンプト CoT:Chain of Thoughtを効かせるためにまず説明を求める。 CoT One Shot Example ユーザーの言語を入力から推定して、出力を縛る。 JSONの配列として出力を求めて、
parseし失敗したらretry。
実行結果から反省とデバッグ bashの出力をteeして、実行結果を systemプロンプトに抜粋して入力 もし、問題があればコードの修正をサジェスト。
スクリプト名の提案プロンプト CoT:Chain of Thoughtを効かせるためにまず説明を求める。 CoT One Shot Example ユーザーの言語を入力から推定して、出力を縛る。 JSONの配列として出力を求めて、
parseし失敗したらretry。
これまでの指示をまとめて概要文を作成
ユーザー言語を推定して、その言語で対話 プロンプトの能力は、英語の方が日本語よりやや高い。 また、論文やライブラリなど例が豊富。 一方、ユーザーへの応答は入力言語から自然と対応してほし い。(ときどき、英語で話し出すのを防ぐ )
Prompt Engineeringも 普通のエンジニアリング。 (既知のパターンの組み合わせと試行錯誤)
wanna think / コマンドを考えるコマンド ソフトウェア開発のプロセス設計し、 AIと人間の役割を決めてステートマシンとして実装 生成 名前提案 概要生成と保存 反省とデバッグ
指示出し 実行 保存 追加指示 指示リセット 名前選択 これまでの 指示をまとめる レビュー 保存フェーズ 終了 Exit 問題があれば修正 LLM の仕事 人間の仕事
LLMソフトウェア =組織プロセス設計
AIが提案し、人間が決める 自然言語を入力するのは意外とめんどくさい。だからできる限り ”意思決定”だけさせる。 LLM の仕事:実装したり提案したり 人間の仕事:目的の提供と意思決定
メンバーが提案し、マネージャが決める AIと人間の関係は、メンバーとマネジメントの組織設計に似ている。 メンバーの仕事:実装したり提案する マネージャの仕事:目的の提供と意思決定
すべての人が AIをマネジメントする マネージャになる。