sampling without replacement from a finite universe,” Journal of the American Statistical Association, 47(260):663-685, 1952. • J. Robins, A. Rotnitzky, and L. P. Zhao, “Estimation of regression coefficients when some regressors are not always observed,” Journal of the American Statistical Association, 89(427):846-866, 1994. • V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins, “Double/debiased machine learning for treatment and structural parameters,” The Econometrics Journal, 21(1), 2018. • J. Pearl, “Causality: Models, Reasoning, and Inference,” Cambridge University press, 2000. • A. Alaa and M. Van der Schaar, “Bayesian nonparametric causal inference: Information rates and learning algorithms,” IEEE Journal of Selected Topics in Signal Processing, 12(5):1031-1046, 2018. • Hahn, P. Richard, Jared S. Murray, and Carlos M. Carvalho. "Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects (with discussion)." Bayesian Analysis 15.3 (2020): 965-1056. • Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." Biometrika 108.2 (2021): 299-319. • V. Aglietti, T. Damoulas, M. A. Alvarez, J. Gonzalez, “Multi-task causal learning with Gaussian processes,” In Proc. of the 34th International Conference on Neural Information Processing Systems (NeurIPS 2020). AI・データ利活用研究会 82