Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
バカが取ったバイキングの皿を持ってきたよ!!
Search
Hayato Tsukagoshi
June 01, 2020
Programming
0
2.2k
バカが取ったバイキングの皿を持ってきたよ!!
This slide describe Twitter bot 'ujimaru', which says words like uzimaru.
Hayato Tsukagoshi
June 01, 2020
Tweet
Share
More Decks by Hayato Tsukagoshi
See All by Hayato Tsukagoshi
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
900
Word Embeddings Are Steers for Language Models
hpprc
1
280
NLP2024 招待論文セッション: 定義文を用いた文埋め込み構成法
hpprc
1
150
修論発表.pdf
hpprc
0
130
YANS2024: 目指せ国際会議!「あぶない国際会議」
hpprc
0
300
Isotropy, Clusters, and Classifiers
hpprc
3
980
[輪講資料] Matryoshka Representation Learning
hpprc
5
2.2k
[輪講資料] Text Embeddings by Weakly-Supervised Contrastive Pre-training
hpprc
4
1.4k
[輪講資料] One Embedder, Any Task: Instruction-Finetuned Text Embeddings
hpprc
1
1.1k
Other Decks in Programming
See All in Programming
Developing static sites with Ruby
okuramasafumi
0
330
tparseでgo testの出力を見やすくする
utgwkk
2
310
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
500
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
32k
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
220
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
180
Patterns of Patterns
denyspoltorak
0
380
Grafana:建立系統全知視角的捷徑
blueswen
0
250
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
170
TestingOsaka6_Ozono
o3
0
180
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
5
1.4k
Featured
See All Featured
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
410
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
30
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
The Pragmatic Product Professional
lauravandoore
37
7.1k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
53
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Being A Developer After 40
akosma
91
590k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Navigating Weather and Climate Data
rabernat
0
56
Transcript
うじまる生誕LT会 バカが取ったバイキングの皿 を持って来たよ!! @hpp_ricecake
うじまる生誕LT会 hpp Twitter : @hpp_ricecake GitHub : hppRC
うじまる生誕LT会 作ったもの
うじまる生誕LT会 うぢまるくん
うじまる生誕LT会
うじまる生誕LT会
うじまる生誕LT会 実装内容
うじまる生誕LT会 - Ujimaru Reformer (不採用) - Ujimaru Markov Model
- Ujimaru Twitter Crawler - Ujimaru Twitter Client - Ujimaru API
うじまる生誕LT会 Ujimaru Reformer
うじまる生誕LT会 Ujimaru Reformer Reformer : NLP分野でSOTAな結果を出しまくったTransformerの高効率版 - うじまるくんのツイートを収集、8000文ほどを元データに(ごめん)
- Google Colaboratory で6時間ほど訓練 - 著者実装を参考にTPU(はやいやつ)で - 訓練したモデルから文生成をする(予定だった) - 生成結果は次のページ
うじまる生誕LT会 Ujimaru Reformer
うじまる生誕LT会 Ujimaru Reformer 反省点 - データが少なすぎる(最低でも100,000文くらいは欲しい...) 解決策 -
うじまるくんが1日4000ツイートくらいする - 日本語Wikiのデータを混ぜる(全然関係ないモデルに...) - データ数が少なくても大丈夫な言語モデルに変更する
うじまる生誕LT会 Ujimaru Markov Model
うじまる生誕LT会 Ujimaru Markov Model マルコフ連鎖 : 以前に出現した系列を元に次の出力を確率的に生成する -
うじまるくんの以前のツイートを元にモデルを作成 - ライブラリとして使えるように、JSONでモデルを出力 - 他の人のツイートも同じく収集して似た傾向の語彙を増強 - PyPIに登録したので`pip install ujimaru-markov-model`して `ujimaru`をするとうじまるくんが喋ります
うじまる生誕LT会 Ujimaru Markov Model
うじまる生誕LT会 Ujimaru Twitter Crawler
うじまる生誕LT会 Ujimaru Twitter Crawler 実装: GO - データ収集に利用 -
anacondaを使用(超便利) - Standard Search APIじゃ足りなかったので Premium Search API (無料枠)も使用 - anacondaにPremium APIを触るメソッドが生えてなかったのでforkして生や した
うじまる生誕LT会 Ujimaru Twitter Client
うじまる生誕LT会 Ujimaru Twitter Client 実装: Rust - ツイートの定期投稿に利用
- ツイートするテキストはAPIから取得 - Twitter API を叩くいい感じのライブラリがなかったので自作↓ - Kuonという名前のOSSとして公開しました(めっちゃWIP)
うじまる生誕LT会 Ujimaru API
うじまる生誕LT会 Ujimaru API 実装: Python (flask) - Cloud
Run でデプロイ (https://ujimaru-api-l3qfihnisq-an.a.run.app/tweet) - アクセスすると生成したテキストを返す - Docker imageをポイするだけなので超簡単
うじまる生誕LT会 Ujimaru API まとめ - ニューラルなモデルを使うときはデータ数に気を付ける - ソースコード
: https://github.com/hppRC/ujimaru - LTのスライドは内容を絞ろう
うじまる生誕LT会