Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
adk-samples に学ぶデータ分析 LLM エージェント開発
Search
na0
November 23, 2025
Technology
0
110
adk-samples に学ぶデータ分析 LLM エージェント開発
DevFest Tokyo 2025
https://gdg-tokyo.connpass.com/event/369416/
na0
November 23, 2025
Tweet
Share
More Decks by na0
See All by na0
BigQuery でできること、人間がやるべきこと
na0
0
940
データ分析エージェント Socrates の育て方
na0
10
5.5k
AI エージェントと考え直すデータ基盤
na0
26
12k
メルカリにおけるデータアナリティクス AI エージェント「Socrates」と ADK 活用事例
na0
28
29k
BigQuery リリースノート - 2023年上半期 #bq_sushi
na0
3
460
2023 年の BigQuery 権限管理
na0
5
3.3k
Dataformとdbtで楽するデータモデリング
na0
1
3.2k
Other Decks in Technology
See All in Technology
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
410
膨大なデータをどうさばく? Java × MQで作るPub/Subアーキテクチャ
zenta
0
120
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
peisuke
0
160
AI駆動開発を実現するためのアーキテクチャと取り組み
baseballyama
13
7.6k
米軍Platform One / Black Pearlに学ぶ極限環境DevSecOps
jyoshise
2
520
DDD x Microservice Architecture : Findy Architecture Conf 2025
syobochim
12
3.1k
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
1.8k
JavaScript パーサーに using 対応をする過程で与えたエコシステムへの影響
baseballyama
1
110
メッセージ駆動が可能にする結合の最適化
j5ik2o
6
760
Building AI Applications with Java, LLMs, and Spring AI
thomasvitale
1
220
AI時代の戦略的アーキテクチャ 〜Adaptable AI をアーキテクチャで実現する〜 / Enabling Adaptable AI Through Strategic Architecture
bitkey
PRO
14
6.9k
「データ無い! 腹立つ! 推論する!」から 「データ無い! 腹立つ! データを作る」へ チームでデータを作り、育てられるようにするまで / How can we create, use, and maintain data ourselves?
moznion
8
5k
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
670
The Language of Interfaces
destraynor
162
25k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Fireside Chat
paigeccino
41
3.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
Editable Location Naofumi Yamada @na0fu3y Analytics Engineer, Mercari, Inc. adk-samples
に学ぶ データ分析 LLM Agent 開発
na0 メルカリでデータ分析 LLM Agent をつくっている人。 Google Developer Expert - Cloud。
LLM Agent 開発の課題意識 • PoC したいけど最小構成って? • どう育てればよい?
今日のゴール • adk-samples を開発の羅針盤だと理解する • データ分析を例として育て方を理解する • 「使える」データ分析エージェントを持ち帰る
github.com/google/ adk-samples
30+ のサンプルエージェント • 双方向対話 bidi-demo • データ分析 data-science • 調査
deep-search • などなど...!
bidi-demo Google 検索できる 音声応答 Agent
from google.adk.agents import Agent from google.adk.tools import google_search agent =
Agent( name="google_search_agent", model="gemini-live-2.5-flash-preview-native-audio-09-2025", tools=[google_search], instruction="You are a helpful assistant." ) adk-samples/python/agents/bidi-demo/
data-science BigQuery と Python を扱うデータ分析 Agent
data-science のツール • BigQuery クエリ実行 • AlloyDB クエリ実行 • BigQuery
ML に関する知識検索 • 自然言語 to SQL • Python 実行
私たちに必須なツールは ...? • BigQuery クエリ実行 • AlloyDB クエリ実行 • BigQuery
ML に関する知識検索 • 自然言語 to SQL • Python 実行
私たちの Agent v1 from google.adk.agents import Agent from google.adk.tools.bigquery import
BigQueryToolset bigquery_toolset = BigQueryToolset(tool_filter=["execute_sql"]) root_agent = Agent( model="gemini-3-pro-preview", name="sample", instruction="You are a data science agent", tools=[bigquery_toolset], )
私たちの Agent v1 BigQuery にクエリを 実行できる
次の私たちに必要なツールは ...? • BigQuery クエリ実行 • BigQuery のテーブルの詳細を確認する • BigQuery
のテーブルを一覧する
私たちの Agent v2 bigquery_toolset = BigQueryToolset( tool_filter=[ "get_table_info", "list_table_ids", "execute_sql",
] )
私たちの Agent v2 データを教えると勝 手に調べて分析して くれる
私たちが他に必要なツールは ...? • BigQuery クエリ実行 • BigQuery のテーブルの詳細を確認する • BigQuery
のテーブルを検索する 一覧する
私たちの Agent v3 def rag_response(query: str) -> str: response =
rag.retrieval_query( rag_resources=[rag.RagResource(rag_corpus=OUR_CORPUS)], text=query, ) return str(response) root_agent = Agent( tools=[bigquery_toolset, rag_response], // 変更のない引数略 )
私たちの Agent v3 データを教えなくても 勝手に調べて分析し てくれる
そろそろガードレールも? • 利用者権限の認可下で動かす ◦ BigQuery クエリ実行 ◦ BigQuery のテーブルの詳細を確認する •
BigQuery のテーブルを検索する
私たちの Agent v4 credentials_config = BigQueryCredentialsConfig( client_id=os.getenv("OAUTH_CLIENT_ID"), client_secret=os.getenv("OAUTH_CLIENT_SECRET"), ) bigquery_toolset
= BigQueryToolset( tool_filter=["get_table_info", "execute_sql"], credentials_config=credentials_config )
私たちがやるべきこと • 欲望を言語化する ◦ 利用者目線の欲望レベルを上げていく ◦ 管理者目線のガードレールも忘れずに • つくる •
くりかえす
欲望が見つからない時は? • Gemini や同僚と話す • adk-samples を眺める • (na0 と話す)
私たちがやるべきこと(再) • LLM と協力して、欲望を言語化する • LLM と協力して、つくる • くりかえす
deep-search Deep Research の 実装例
ん? • Google 検索ツールを BigQuery やドキュメントを 参照するツールに置き換えたら...?
私たちがやるべきこと(再々) • LLM と協力して、欲望を言語化する • LLM と協力して、つくる • くりかえす