Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
車両走行データの時系列クラスタリング
Search
Ikuya Murasato
February 05, 2021
Business
0
6.8k
車両走行データの時系列クラスタリング
2021/2/5(金) に開催したExploratory データサイエンス勉強会#17のスズキ株式会社のご登壇資料です。
Ikuya Murasato
February 05, 2021
Tweet
Share
More Decks by Ikuya Murasato
See All by Ikuya Murasato
トピックモデル分析を活用した問合せ業務の効率化
ikuyam
1
270
回帰分析の活用による新商品の販売力予測
ikuyam
1
180
生存分析モデルを利用したLineのブロック要因分析
ikuyam
0
120
自動車トラブルと気象条件などの探索的データ分析
ikuyam
0
100
データサイエンス「も」使えるチェンジメーカー輩出への挑戦
ikuyam
0
450
ExploratoryとRによる全学データサイエンス教育
ikuyam
0
660
エンゲージメント向上のための人事制度改革 - 管理部門におけるExploratoryの活用
ikuyam
0
2k
「学ぶ」分析技術から「使う」分析技術へ - Exploratoryによるドリル演習
ikuyam
0
480
データサイエンス入門教育の現場から - 46歳新任教員2年間の苦闘
ikuyam
0
590
Other Decks in Business
See All in Business
「要はバランス」を見極める - ADR実践で目指す技術的卓越への道 / It Depends: Practicing ADRs Toward Technical Excellence
ewa
0
820
Growth Book
kuradashi
0
350
「2025年のAI」と「2026年のAI」
masayamoriofficial
1
660
Company Profile
katsuegu23
2
12k
採用ピッチ資料|SBペイメントサービス株式会社
sbps
0
36k
HA-LU Inc.|カンパニーデック - 会社資料
halu_japan
1
480
AI時代のデータアナリストの立ち位置
isseiito
0
130
コーポレートストーリー(新規投資家様向け会社説明資料)
gatechnologies
1
16k
(6枚)プレゼンの技法 ピラミッドストラクチャー PREP法 SDS法 STAR法
nyattx
PRO
2
330
アシスト 会社紹介資料
ashisuto_career
3
150k
malna-recruiting-pitch
malna
0
13k
RSGT2026 Dave Snowden Keynote
julesyim
0
340
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Automating Front-end Workflow
addyosmani
1371
200k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
What's in a price? How to price your products and services
michaelherold
246
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Navigating Weather and Climate Data
rabernat
0
65
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Un-Boring Meetings
codingconduct
0
170
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
230
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Transcript
Confidential Engineering Division 車両走行データのクラスタリング © Copyright [2021] SUZUKI MOTOR CORPORATION
All rights Reserved 【注1】本書に記載されている内容に関する一切の権利(特許、意匠権、商標、トレードシークレット、ノウハウその他の産業財産権又は知的財産権、並びにこれらに関する権利を 含むが、これらに限定されない)は、スズキ株式会社に帰属する。 【注2】形式や方法の如何を問わず、スズキ株式会社の事前の書面による許可なく、本書をコピー、修正、複製、要約すること、及び第三者に開示することを禁止する。 スズキ株式会社 千明 将人
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 目次 1. 自己紹介 会社紹介 自己紹介 2. テーマについて 3. 分析手法 パターン抽出 時系列データクラスタリング 結果の可視化 4. まとめ
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 目次 1. 自己紹介 会社紹介 自己紹介 2. テーマについて 3. 分析手法 パターン抽出 時系列データクラスタリング 結果の可視化 4. まとめ
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 会社紹介 スズキ株式会社 四輪車・二輪車・船外機・電動車いす等の製造メーカー 出典URL:https://www.suzuki.co.jp/100th/
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 自己紹介 千明 将人(ちぎら まさと) 入社 (2012.4) ハイブリッド車両開発(2012-2018) プロセス改善・業務分析(2018~) Exploratory歴:2年弱 データサイエンスブートキャンプ参加(2019.7) 統計、プログラミングの知識は0から
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 目次 1. 自己紹介 会社紹介 自己紹介 2. テーマについて 3. 分析手法 パターン抽出 時系列データクラスタリング 結果の可視化 4. まとめ
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved Exploratoryと分析業務 担当者の工数 依頼業務メール
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 時系列のデータをグルーピングする 目標達成度 時間 組織A 目標達成度 組織B 目標達成度 組織C 時間 時間 時系列のデータをグルーピング できないか ・ ・
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 車両走行データとは 出典:浜松自動運転やらまいかプロジェクト https://www.city.hamamatsu.shizuoka.jp/sangyoshinko/yaramaikaproject.html 引用図
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 目次 1. 自己紹介 会社紹介 自己紹介 2. テーマについて 3. 分析手法 パターン抽出 時系列データクラスタリング 結果の可視化 4. まとめ
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved パターン抽出 同じグループとして抽出したい
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved パターン抽出
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved パターン抽出
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 時系列クラスタリング 必要なデータ 日付/時間 分類したいカテゴリ 時系列の値
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 時系列クラスタリング ① ② ③
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 時系列クラスタリング
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 実行結果
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 結果の可視化
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 結果の可視化
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 結果の可視化
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 結果の可視化 プロドライバー (バス運転手) 一般ドライバー (スズキ社員の運転)
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved チューニング クラスター数を 調整 異なるクラスターに同じようなパターンが・・・
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved チューニング 余計なデータが多く分類できてなさそう 短いデータを フィルター処理
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 目次 1. 自己紹介 会社紹介 自己紹介 2. テーマについて 3. 分析手法 パターン抽出 時系列データクラスタリング 結果の可視化 4. まとめ
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved まとめ • やったこと 車両走行データをクラスタリングしてグルーピング 課題はあるが時系列クラスタリング活用の見通しが立った • 今後の見通し 見落としていた車両挙動を発見し車両開発に使えるか検討 組織のパフォーマンスの分析として活用方法を検討
Confidential Engineering Division © Copyright [2021] SUZUKI MOTOR CORPORATION All
rights Reserved 以上