$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
I keep saying the sexy job in the next ten year...
Search
Tazro Inutano Ohta
February 24, 2014
Science
0
170
I keep saying the sexy job in the next ten years will be biodatabase.
第五回統合牧場収穫祭「閑話・バイオデータベースは最高にセクシーな研究分野である」 with respect to @sesejun
Tazro Inutano Ohta
February 24, 2014
Tweet
Share
More Decks by Tazro Inutano Ohta
See All by Tazro Inutano Ohta
Yevis: System to support building a workflow registry with automated quality control
inutano
0
130
Standardization of biological sample information database
inutano
0
79
Describe data analysis workflow with workflow languages
inutano
5
5.6k
Container virtualization technologies and workflow languages improve portability and reproducibility of data analysis environment
inutano
3
350
次世代シーケンサーによるメタゲノム解析:桜の花びらに付着した環境DNAを解析する
inutano
0
110
Workflows that run everywhere and where to run them
inutano
0
170
The Sequence Read Archive search system to make use of public high-throughput sequencing data
inutano
0
300
Improve portability of bioinformatics software across HPC and cloud infrastructures
inutano
1
120
Container, Cloud, and HPC
inutano
0
180
Other Decks in Science
See All in Science
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.7k
Algorithmic Aspects of Quiver Representations
tasusu
0
120
データマイニング - ノードの中心性
trycycle
PRO
0
320
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
450
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
150
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
データマイニング - ウェブとグラフ
trycycle
PRO
0
210
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
210
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
560
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Music & Morning Musume
bryan
46
7k
Building an army of robots
kneath
306
46k
Become a Pro
speakerdeck
PRO
31
5.7k
Docker and Python
trallard
47
3.7k
4 Signs Your Business is Dying
shpigford
186
22k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Mobile First: as difficult as doing things right
swwweet
225
10k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Transcript
None
None
None
None
http://bioinfowakate.org/images/bioinfo2013_2.pdf
http://bioinfowakate.org/images/bioinfo2013_2.pdf
None
biological novelty methodological novelty death valley sexy bioinfo
None
biological novelty methodological novelty death valley BioDB
https://twitter.com/spacecatpics
None
ਓʮԿͷͨΊʹʯσʔλΛެ։͢Δͷ͔ʁ
http://www.plosone.org/static/publication#data%20report
(ग़ͤͱ)ɹݴΘΕΔ͔Βग़͢
http://www.nature.com/nature/focus/reproducibility/
ΦʔϓϯαΠΤϯεͱ͍͏ཧ೦
ΦʔϓϯαΠΤϯεͱ͍͏ཧ
ΦʔϓϯαΠΤϯεͱ͍͏ໝ
ΦʔϓϯαΠΤϯεͱ͍͏ཧ೦ ΦʔϓϯαΠΤϯεͱ͍͏ཧ ΦʔϓϯαΠΤϯεͱ͍͏ໝ
http://en.wikipedia.org/wiki/Open_science
http://blogs.nature.com/scientificdata/2013/07/04/research-data-hard-to-find-watch-our-short-video/
http://blogs.nature.com/scientificdata/2013/07/04/research-data-hard-to-find-watch-our-short-video/
None
ͦΕϙϦγʔͰ͋Γɺ৴೦Ͱ͋Δ
͕ͩ৴೦Ͱϝγ͕৯͑Δͷ͔
(ͳ͠)
WE NEED ۀ
biological novelty methodological novelty death valley BioDB
αΠΤϯεͷߩݙจͷͰ͔͠ଌΕͳ͍ͷ͔
http://www.nature.com/nmat/journal/v11/n11/full/nmat3485.html
σʔλͷެ։͕ۀʹͳ͍͍ͬͯ
σʔλϕʔεͷඋ͕ۀʹͳ͍͍ͬͯ
http://www.nature.com/scientificdata/
http://www.gigasciencejournal.com
͍ΖΜͳج४͕͍͍͋ͬͯ
(ͳ͚Ε࡞Ε)
None
None
None
None
None
None
None
None
None
None
biological novelty methodological novelty death valley BioDB
None
biological novelty methodological novelty death valley BioDB
None
None
None
None
None
None